首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fish pathogen, Vibrio cholerae non-O1, was isolated from diseased ayu fish (Plecoglossus altivelis) collected from rivers in eight prefectural districts of Japan. This organism was found to have biochemical characteristics similar to those of V. cholerae non-O1, except that our isolates were negative for ornithine decarboxylase. Antiserum against an ayu isolate did not agglutinate with the majority of environmental V. cholerae non-O1 isolates, but a major O antigen was common among the ayu isolates. All strains were hemolytic to sheep erythrocytes, and oral administration of culture supernatants induced fluid accumulation in suckling mice. However, the crude toxin was not lethal to adult mice, and no cholera toxin-like enterotoxins were detected.  相似文献   

2.
The role of biofilm as a microenvironment of plankton-associated Vibrio cholerae was investigated using plexiglass as a bait. A total of 72 biofilm samples were tested using culture, direct fluorescent antibody (DFA) and molecular techniques following standard procedures. Culturable V. cholerae (smooth and rugose variants) were isolated from 33% of the samples. V. cholerae O1 were detected by FA technique throughout the year except April and June. All V. cholerae O1 isolates were positive for tcpA, ctxA and ace genes while V. cholerae non-O1, non-O139 isolates lacked these genes. V. cholerae O1 (both Inaba and Ogawa) strains had identical ribotype pattern (R1), but V. cholerae non-O1, non-O139 had different ribotype patterns. All V. cholerae O1 strains were resistant to vibrio-static compound (O/129). All V. cholerae O1 except one were resistant to trimethoprime-sulphamethoxazole, streptomycin, nalidixic acid and furazolidone but sensitive to ciprofloxacin, and tetracycline. This study indicates that plexiglass can act as a bait to form biofilm, a microenvironment that provides shelter for plankton containing V. cholerae in the aquatic environment of Bangladesh.  相似文献   

3.
The DNA sequences of the asd genes from 45 isolates of Vibrio cholerae (19 clinical O1 isolates, 2 environmental nontoxigenic O1 isolates, and 24 isolates with different non-O1 antigens) were determined. No differences were found within either sixth- or seventh-pandemic isolates; however, variation was found between the two forms and among the non-O1 isolates. O139 isolates had sequences identical to those of seventh-pandemic isolates. Phylogenetic trees with Vibrio mimicus as the outgroup suggest that the sixth-pandemic, seventh-pandemic, and U.S. Gulf isolates are three clones that have evolved independently from different lineages of environmental, nontoxigenic, non-O1 V. cholerae isolates. There is evidence for horizontal transfer of O antigen, since isolates with nearly identical asd sequences had different O antigens, and isolates with the O1 antigen did not cluster together but were found in different lineages. We also found evidence for recombination events within the asd gene of V. cholerae. V. cholerae may have a higher level of genetic exchange and a lower level of clonality than species such as Salmonella enterica and Escherichia coli.  相似文献   

4.
Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah   总被引:3,自引:0,他引:3  
Vibrio cholerae was isolated from cloacal swabs and freshly voided feces collected from 20 species of aquatic birds in Colorado and Utah during 1986 and 1987. About 17% (198 of 1,131) fecal specimens collected from July 1986 through August 1987 contained the organism. Both O1 and non-O1 V. cholerae strains were isolated from the fecal specimens. Isolates from eight birds (representing five species) agglutinated in O group 1 antiserum. Supernatants of broth cultures from three isolates which typed as V. cholerae O1 serotype Ogawa gave reactions typical of cholera toxin when tested on Y-1 mouse adrenal cell cultures. Several serovars of non-O1 V. cholerae were isolated from the fecal specimens; serovar 22 was the most prevalent type. All non-O1 isolates were cytotoxic to Y-1 mouse adrenal cells. Only non-O1 V. cholerae was detected in water samples collected from the habitat of the birds. The results of this study suggest that aquatic birds serve as carriers and disseminate V. cholerae over a wide area.  相似文献   

5.
Vibrio cholerae was isolated from cloacal swabs and freshly voided feces collected from 20 species of aquatic birds in Colorado and Utah during 1986 and 1987. About 17% (198 of 1,131) fecal specimens collected from July 1986 through August 1987 contained the organism. Both O1 and non-O1 V. cholerae strains were isolated from the fecal specimens. Isolates from eight birds (representing five species) agglutinated in O group 1 antiserum. Supernatants of broth cultures from three isolates which typed as V. cholerae O1 serotype Ogawa gave reactions typical of cholera toxin when tested on Y-1 mouse adrenal cell cultures. Several serovars of non-O1 V. cholerae were isolated from the fecal specimens; serovar 22 was the most prevalent type. All non-O1 isolates were cytotoxic to Y-1 mouse adrenal cells. Only non-O1 V. cholerae was detected in water samples collected from the habitat of the birds. The results of this study suggest that aquatic birds serve as carriers and disseminate V. cholerae over a wide area.  相似文献   

6.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

7.
Non-O1 Vibrio cholerae was isolated from rivers, creeks, washes, irrigation canals, and ditches in western Colorado during the summer of 1985. The organism occurred in fresh water (less than or equal to 5 mmol of Na+ per liter) as well as in water of higher salinity (approximately equal to 17 mmol per liter). Sixteen serovars of non-O1 V. cholerae were Sixteen serovars of non-O1 V. cholerae were identified among the environmental isolates. All of the isolates were cytotoxic to Y-1 mouse adrenal cells.  相似文献   

8.
Vibrio parahaemolyticus, V. cholerae, and V. vulnificus were isolated from 10.3%, 1.0%, and 0.1% of 885 blue mussel samples, respectively. Four of the samples contained trh(+) V. parahaemolyticus, while no tdh-positive isolates were detected. The V. cholerae isolates were non-O:1/non-O:139 serotypes and were ctxA negative.  相似文献   

9.
J B Rhodes  H L Smith  Jr    J E Ogg 《Applied microbiology》1986,51(6):1216-1219
Non-O1 Vibrio cholerae was isolated from rivers, creeks, washes, irrigation canals, and ditches in western Colorado during the summer of 1985. The organism occurred in fresh water (less than or equal to 5 mmol of Na+ per liter) as well as in water of higher salinity (approximately equal to 17 mmol per liter). Sixteen serovars of non-O1 V. cholerae were Sixteen serovars of non-O1 V. cholerae were identified among the environmental isolates. All of the isolates were cytotoxic to Y-1 mouse adrenal cells.  相似文献   

10.
AIMS: To examine the utility of polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) analysis to differentiate epidemic and nonepidemic Vibrio cholerae isolates as well as to differentiate V. cholerae and Vibrio mimicus isolates. METHODS AND RESULTS: By both PCR-restriction fragment length polymorphism (RFLP) and PCR-SSCP analysis of groEL-I on chromosome 1 and groEL-II on chromosome 2, V. cholerae isolates gave distinct profiles compared with V. mimicus isolates. In addition, PCR-SSCP analysis of groEL-I and groEL-II could differentiate between V. cholerae epidemic and nonepidemic isolates. Interestingly, the relationships among strains based on groEL-I from chromosome 1 and groEL-II from chromosome 2 were congruent with each other, highlighting the conserved evolutionary history of both chromosomes in this species. CONCLUSIONS: PCR-SSCP is a powerful typing technique, which has the ability to differentiate V. cholerae and V. mimicus isolates. The epidemic V. cholerae O1/O139 serogroup isolates represent a clonal complex distinct from non-O1/non-O139 isolates that can be identified by PCR-SSCP analysis. SIGNIFICANCE AND IMPACT OF THE STUDY: This study highlights the effectiveness of using reliable molecular typing methods and in particular PCR-SSCP, to identify genetic variation among V. cholerae and V. mimicus isolates.  相似文献   

11.
Vibrio cholerae is an autochthonous inhabitant of riverine and estuarine environments and also is a facultative pathogen for humans. Genotyping can be useful in assessing the risk of contracting cholera, intestinal, or extraintestinal infections via drinking water and/or seafood. In this study, environmental isolates of V. cholerae were examined for the presence of ctxA, hlyA, ompU, stn/sto, tcpA, tcpI, toxR, and zot genes, using multiplex PCR. Based on tcpA and hlyA gene comparisons, the strains could be grouped into Classical and El Tor biotypes. The toxR, hlyA, and ompU genes were present in 100, 98.6, and 87.0% of the V. cholerae isolates, respectively. The CTX genetic element and toxin-coregulated pilus El Tor (tcpA ET) gene were present in all toxigenic V. cholerae O1 and V. cholerae O139 strains examined in this study. Three of four nontoxigenic V. cholerae O1 strains contained tcpA ET. Interestingly, among the isolates of V. cholerae non-O1/non-O139, two had tcpA Classical, nine contained tcpA El Tor, three showed homology with both biotype genes, and four carried the ctxA gene. The stn/sto genes were present in 28.2% of the non-O1/non-O139 strains, in 10.5% of the toxigenic V. cholerae O1, and in 14.3% of the O139 serogroups. Except for stn/sto genes, all of the other genes studied occurred with high frequency in toxigenic V. cholerae O1 and O139 strains. Based on results of this study, surveillance of non-O1/non-O139 V. cholerae in the aquatic environment, combined with genotype monitoring using ctxA, stn/sto, and tcpA ET genes, could be valuable in human health risk assessment.  相似文献   

12.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

13.
Abstract: The abundance and antibiotic resistance of non-O1 Vibrio cholerae strains were studied in wastewater before and after treatment in stabilization ponds in an arid Mediterranean climate. The seasonal abundance of non-O1 Vibrio cholerae was the inverse of those of fecal coliforms, with high densities in hot periods and low densities in cold periods. Although the stabilization pond presents a good efficiency in removing fecal coliforms (97.97%), this treatment system did not produce any significant reduction in non-O1 V. cholerae abundances between the inflow and outflow stations. Among the 240 non-O1 V. cholerae strains isolated before and after treatment in the stabilization ponds, 89 (37.1%) isolates were resistant to at least one of 14 tested antibiotics. The levels of antibiotic resistance at the inflow and outflow points of the system were respectively 40 and 34%. High ampicillin, amoxicillin and mezlocillin resistance was observed at all sampling points, followed by resistance to cefalexin, cefoperazone and amikacin. Antibiotic resistance can be transferred from non-O1 V. cholerae to other members of the Enterobacteriaceae family such as Escherichia coli K12. Transfer frequencies in nutrient broth and filtered wastewater were 3 × 10−5 and 2 × 10−8, respectively.  相似文献   

14.
The pathogenic strains of Vibrio cholerae that cause acute enteric infections in humans are derived from environmental nonpathogenic strains. To track the evolution of pathogenic V. cholerae and identify potential precursors of new pathogenic strains, we analyzed 324 environmental or clinical V. cholerae isolates for the presence of diverse genes involved in virulence or ecological fitness. Of 251 environmental non-O1, non-O139 strains tested, 10 (3.9%) carried the toxin coregulated pilus (TCP) pathogenicity island encoding TCPs, and the CTX prophage encoding cholera toxin, whereas another 10 isolates carried the TCP island alone, and were susceptible to transduction with CTX phage. Most V. cholerae O1 and O139 strains carried these two major virulence determinants, as well as the Vibrio seventh pandemic islands (VSP-1 and VSP-2), whereas 23 (9.1%) non-O1, non-O139 strains carried several VSP island genes, but none carried a complete VSP island. Conversely, 30 (11.9%) non-O1, non-O139 strains carried type III secretion system (TTSS) genes, but none of 63 V. cholerae O1 or O139 strains tested were positive for TTSS. Thus, the distribution of major virulence genes in the non-O1, non-O139 serogroups of V. cholerae is largely different from that of the O1 or O139 serogroups. However, the prevalence of putative accessory virulence genes (mshA, hlyA, and RTX) was similar in all strains, with the mshA being most prevalent (98.8%) followed by RTX genes (96.2%) and hlyA (94.6%), supporting more recent assumptions that these genes imparts increased environmental fitness. Since all pathogenic strains retain these genes, the epidemiological success of the strains presumably depends on their environmental persistence in addition to the ability to produce major virulence factors. Potential precursors of new pathogenic strains would thus require to assemble a combination of genes for both ecological fitness and virulence to attain epidemiological predominance.  相似文献   

15.
DNA colony hybridization with a polynucleotide clonal DNA probe for heat-stable enterotoxin of Vibrio cholerae non-O1 (NAG-ST) was used to screen 197 isolates of V. cholerae O1. Under stringent hybridizing and washing conditions, one strain (GP156) reacted with the probe. The concentrated supernatant from V. cholerae O1 GP156, heated at 100 degrees C for 5 min, elicited fluid accumulation in the suckling mice and that could be completely neutralized by an anti-NAG-ST monoclonal antibody (mAb2F). The preparation from V. cholerae O1 GP156 also inhibited the binding of mAb2F to NAG-ST in a competitive ELISA. V. cholerae O1 GP156 was confirmed to possess a gene encoding cholera toxin (CT). These results indicate that a heat-stable enterotoxin is produced by certain strains of CT-producing V. cholerae O1.  相似文献   

16.
Abstract Haemaglutinin/protease (HA/P) is one of the virulence factors of Vibrio cholerae O1 and pathogenic strains of V. cholerae non-O1. In this study, we examined protease activity of a new serogroup of Vibrio cholerae recently designated as O139 synonym Bengal. The protease activity was produced by all eight isolates of V. cholerae O139 from Bangladeshi patients. Purification and partial characterization of the protease from V. cholerae O139 demonstrated the purified protease (O139-P) was indistinguishable from that previously reported for HA/P of V. cholerae non-O1 (NAG-HA/P) and V. cholerae O1 (Vc-HA/P). These results prove that V. cholerae O139 produces a protease belonging to solHA/P, and suggest that the protease is another virulence factor found in newly emerged V. cholerae O139, as in V. cholerae O1.  相似文献   

17.
Incidence of Vibrio cholerae from estuaries of the United States West Coast   总被引:3,自引:0,他引:3  
The incidence of Vibrio cholerae in shellfish, sediment, and waters of California, Oregon, and Washington was determined during the summer of 1984. Samples from 24 distinct estuaries were analyzed qualitatively. V. cholerae non-O1 was found in 23 estuaries and in 44.6% of the 529 samples examined. V. cholerae O1 Inaba was isolated from water samples in Morro Bay, Calif. Vibrio mimicus was found in 2.3% of the samples. Cholera enterotoxin was not found in cell-free filtrates of the 100 isolates tested in the Y-1 mouse adrenal cell assay, but heat-labile cytotoxic activity was observed with 3% of the isolates.  相似文献   

18.
A fluid-accumulating factor (FAF in the ligated rabbit ileal loop test) from a strain of non-O1 Vibrio cholerae not producing cholera toxin-like enterotoxin (CTLT) was partially purified by ammonium sulfate precipitation, gel filtration with Sephadex G-100, and DEAE cellulose column chromatography. The preparation thus obtained showed collagenolytic, cytolytic, necrotic, and hemorrhagic activities, but was not lethal to mice nor hemolytic to sheep erythrocytes. Desquamation of epithelial cells, inflammatory edema, and hemorrhage were observed in sections of rabbit intestine after inoculation of partially purified FAF (PPFAF). Biological and enzymatic activities of FAF were completely neutralized with anti-PPFAF rabbit serum. More than 70% of non-O1 V. cholerae strains from human diarrheal feces produced FAF in the shake culture of heart infusion broth (Difco). A fluid-accumulating factor immunologically similar to FAF of non-O1 V. cholerae was also produced by V. mimicus strains isolated from human diarrheal feces. These results indicate that the FAF produced by CTLT-negative non-O1 V. cholerae strains is an entity closely related to a cytolytic and hemorrhagic substance or the like, and that this FAF may play a role in the enteropathogenicity of CTLT-negative strains.  相似文献   

19.
A collection of Vibrio cholerae non-O1 isolated from the aquatic environs of Calcutta, a cholera-hyperendemic area, were examined for the production of cholera toxin (CT), Shiga-like toxins (Vero toxins), heat-stable enterotoxin, and hemolysins. Two (0.5%) V. cholerae non-O1 isolates produced CT. The DNA from both these isolates also hybridized with a DNA probe containing sequences encoding the A subunit of CT. None of the strains produced Shiga-like toxins or heat-stable enterotoxin. Hemolytic activity was observed in 89.7% of the strains, of which 36.1% exhibited biological activity in the suckling mouse. However, none of them produced a hemolysin that cross-reacted with the thermostable direct hemolysin of Vibrio parahaemolyticus. It appears from this study that a small percentage of environmental V. cholerae non-O1 strains do possess the potential for causing cholera-like diarrhea.  相似文献   

20.
The incidence of Vibrio cholerae in shellfish, sediment, and waters of California, Oregon, and Washington was determined during the summer of 1984. Samples from 24 distinct estuaries were analyzed qualitatively. V. cholerae non-O1 was found in 23 estuaries and in 44.6% of the 529 samples examined. V. cholerae O1 Inaba was isolated from water samples in Morro Bay, Calif. Vibrio mimicus was found in 2.3% of the samples. Cholera enterotoxin was not found in cell-free filtrates of the 100 isolates tested in the Y-1 mouse adrenal cell assay, but heat-labile cytotoxic activity was observed with 3% of the isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号