首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
邹正升  王升启 《病毒学报》1995,11(3):262-265
  相似文献   

2.
Single-stranded DNA binding protein is a key component in growth of bacteriophage T7. In addition, DNA synthesis by the purified in vitro replication system is markedly stimulated when the DNA template is coated with Escherichia coli single-stranded DNA binding protein (SSB). In an attempt to understand the mechanism for this stimulation, we have studied the effect of E. coli SSB on DNA synthesis by the T7 DNA polymerase using a primed single-stranded M13 DNA template which serves as a model for T7 lagging strand DNA synthesis. Polyacrylamide gel analysis of the DNA product synthesized on this template in the absence of SSB indicated that the T7 DNA polymerase pauses at many specific sites, some stronger than others. By comparing the position of pausing with the DNA sequence of this region and by using a DNA template that contains an extremely stable hairpin structure, it was found that many, but not all, of these pause positions correspond to regions of potential secondary structure. The presence of SSB during synthesis resulted in a large reduction in the frequency of hesitations at many sites that correspond to these secondary structures. However, the facts that a large percentage of the pause sites remain unaffected even at saturating levels of SSB and that SSB stimulates synthesis on a singly primed poly(dA) template suggested that other mechanisms also contribute to the stimulation of DNA synthesis caused by SSB. Using a sucrose gradient analysis, we found that SSB increases the affinity of the polymerase for single-stranded DNA that this increased binding is only noticed when the polymerase concentration is limiting. The effect of this difference in polymerase affinity was clearly observed by a polyacrylamide gel analysis of the product DNA synthesized during a limited DNA synthesis reaction using conditions where only two nucleotides are added to the primer. Under these circumstances, where the presence of hairpin structures should not contribute to the stimulatory effect of SSB, we found that the extension of the primer is stimulated 4-fold if the DNA template is coated with SSB. Furthermore, SSB had no effect on this synthesis at large polymerase to template ratios.  相似文献   

3.
Summary DNA synthesis in vitro using intact duplex T7 DNA as template is dependent on a novel group of three phage T7-induced proteins: DNA-priming protein (activity which complements a cell extract lacking the T7 gene 4-protein), T7 DNA polymerase (gene 5-protein plus host factor), and T7 DNA-binding protein. The reaction requires, in addition to the four deoxyribonucleoside triphosphates, all four ribonucleoside triphosphates and is inhibited by low concentrations of actinomycin D. Evidence is presented that the priming protein serves as a novel RNA polymerase to form a priming segment which is subsequently extended by T7 DNA polymerase. T7 RNA polymerase (gene 1-protein) can only partially substitute for the DNA-priming protein. At 30°C, deoxyribonucleotide incorporation proceeds for more than 2 hours and the amount of newly synthesized DNA can exceed the amount of template DNA by 10-fold. The products of synthesis are not covalently attached to the template and sediment as short (12S) DNA chains in alkaline sucrose gradients. Sealing of these fragments into DNA of higher molecular weight requires the presence of E. coli DNA polymerase I and T7 ligase. Examination of the products in the electron microscope reveals many large, forked molecules and a few eye-shaped structures resembling the early replicative intermediates normally observed in vivo.  相似文献   

4.
Abstract A sensitivity assay for Porphyromonas gingivalis based upon the polymerase chain reaction (PCR) was developed. A 426-bp sequence, including a Dra I- Hinc II DNA fragment (278 bp) encoding the 40-kDa outer membrane protein of the P. gingivalis gene was amplified. PCR products were obtained from chromosomal DNAs of the P. gingivalis strains tested but not from those of other oral microorganisms. The lower limit of template DNA detection was 10 pg with 30 cycles and 100 fg with 40 cycles of PCR by agarose gel electrophoresis. The PCR products were hybridized with Dra I- Hinc II DNA fragment internal to the PCR primers regions used. The lower limit of hybridization detection was 10 pg and 10 fg of template DNA with 30 and 40 cycles of PCR, respectively. These results demonstrated the simplicity, rapidity and specificity of the procedure, as well as the use of the Dra I- Hinc II DNA fragment in the identification of P. gingivalis .  相似文献   

5.
A rapid protocol for sexing chick embryos (Gallus g. domesticus)   总被引:3,自引:0,他引:3  
M. Clinton 《Animal genetics》1994,25(5):361-362
A method for establishing the sex of chick embryos before the appearance or morphological differences between males and females has been developed. DNA was isolated from 5–7-day-old embryos by proteinase K digestion and subjected to polymerase chain reaction (PCR) amplification with W-chromosome specific primers. Sexing can be achieved within 1 day using as little as 1 ng template DNA.  相似文献   

6.
With the use of an in vitro complementation assay to measure activity, the gene 4 protein of bacteriophage T7 has been purified 1000-fold to yield a nearly homogeneous protein. The purified gene 4 protein is a single polypeptide having a molecular weight of 58,000. In addition to being essential for T7 DNA replication in vivo and in vitro, the gene 4 protein is required for DNA synthesis by the purified T7 DNA polymerase on duplex T7 DNA templates. In the absence of ribonucleoside 5'-triphosphates, DNA synthesis by the gene 4 protein and the T7 DNA polymerase is dependent on phosphodiester bond interruptions containing 3'-hydroxyl groups (nicks) in the duplex DNA. The reaction is specific for the T7 DNA polymerase, but any duplex DNA containing nicks can serve as template. The Km for nicks in the reaction is 3 x 10(-10) M.  相似文献   

7.
8.
The T7gene-4 protein has been purified to near homogeneity using a complementation assay in vitro, and it is designated T7 DNA-priming protein (DNA primase). The purified enzyme enables T7 DNA polymerase to initate DNA synthesis on various circular single-stranded DNA templates by a mechanism which involes the synthesis of a very short RNA primer. The oligoribonucleotide, which is linked to the product DNA via a 3':5'-phosphodiester bond, starts with pppA-C and terminates predominantly with AMP. When only ATP and CPT are precursors, the RNA primer is found to be primarily a tetranucleotide of the sequence pppA-C-C-A. Using oligoribonucleotides in place of ribonucleoside triphosphates as chain initators, T7 DNA-priming protein drastically increases the efficiency with which T7 DNA polymerase can utilize particular tetranucleotide primers containing A and C residues. T7 DNA-priming protein also enables T7 DNA polymerase to make use of native or nicked duplex T7 DNA as template-primer. This reaction does not require ribonucleoside triphosphates, although their addition enhances DNA synthesis 2--4 fold. The product formed in their absence is covalently attached to the template DNA and is found to contain a few long branches when examined by electron microscopy. In the presence of ribonucleoside triphosphates most of the newly made product arises from imitation of DNA chains de novo. Incubation of three proteins: T7 DNA-priming protein, T7 DNA polymerase, and T7 DNA-binding protein, with ribonucleoside and deoxyribonucleoside triphosphates, and with phiX174DNA as template leads to the generation of 'rolling circle-like' structures as visualized in the electron microscope. Single-stranded regions at the tail-circle junction indicate that initations can occur de novo on the displaced complementary strand. This is consistent with a discontinuous mode of 'lagging' strand synthesis and suggests that the same proteins may also be responsible for fork propagation in vivo.  相似文献   

9.
10.
汉坦病毒陈株S基因编码区的克隆,序列分析及表达   总被引:1,自引:0,他引:1  
从汉坦病毒陈株感染的VeroE6细胞裂解液中提取病毒RNA,经逆转录PCR获得病毒S基因编码区约1.3kbcDNA片段,克隆该片段后进行核苷酸序列测定,并与汉坦病毒76118株进行同源性比较,结果二者核苷酸序列同源性为86%,推导的氨基酸序列同源性为97%。将该基因片段插入原核表达载体pGEX4T1,在大肠杆菌中获得高效表达。表达产物为GSTNP融合蛋白。SDSPAGE检测表达蛋白分子约72kD左右。Westernbloting和ELISA试验结果表明,表达产物可与多株抗汉坦病毒核蛋白的McAb发生反应,其抗原表位及McAb反应谱与76118株相比存在某些差异。  相似文献   

11.
We describe a new application of megaprimer polymerase chain reaction (PCR) for constructing a tandemly repeated DNA sequence using the drought responsive element (DRE) from Arabidopsis thaliana as an example. The key feature in the procedure was PCR primers with partial complementarity but differing melting temperatures (T(m)). The reverse primer had a higher T(m), a 3' end complementary to the DRE sequence and a 5' region complementary to the forward primer. The initial cycles of the PCR were conducted at a lower primer annealing temperature to generate products that served as megaprimers in the later cycles conducted at a higher temperature to prevent annealing of the forward primer. The region of overlap between the megaprimers was extended for generating products with a variable copy number (one to four copies) of tandem DRE sequence repeats (71?bp). The PCR product with four tandem repeats (4× DRE) was used as a template to generate tandem repeats with higher copies (copy number large than four) or demonstrated to bind DRE-binding protein in an yeast one-hybrid assay using promotorless reporter genes (HIS and lacZ). This PCR protocol has numerous applications for generating DNA fragments of repeated sequences.  相似文献   

12.
13.
Smucker EJ  Turchi JJ 《Biochemistry》2001,40(8):2426-2432
Human TTAGGG repeat-binding factor 1 (TRF1) is involved in the regulation of telomere length in vivo, but the mechanism of regulation remains largely undefined. We have developed an in vitro system for assessing the effect of TRF1 on DNA synthesis using purified proteins and synthetic DNA substrates. Results reveal that TRF1, when bound to telomeric duplex DNA, inhibits DNA synthesis catalyzed by DNA polymerase alpha/primase (pol alpha). Inhibition required that TRF1 be bound to duplex telomeric DNA as no effect of TRF1 was observed on nontelomeric, random DNA substrates. Inhibition was shown to be dependent on TRF1 concentration and the length of the telomeric duplex region of the DNA substrate. When bound in cis to telomeric duplex DNA, TRF1 was also capable of inhibiting pol alpha-catalyzed DNA synthesis on nontelomeric DNA sequences from positions both upstream and downstream of the extending polymerase. Inhibition of DNA synthesis was shown to be specific for TRF1 but not necessarily for the DNA polymerase used in the extension reaction. In a series of control experiments, we assessed T7 DNA polymerase-catalyzed synthesis on a DNA template containing tandem gal4 operators. In these experiments, the addition of the purified Gal4-DNA binding domain (Gal4-DBD) protein has no effect on the ability of T7 polymerase to copy the DNA template. Interestingly, TRF1 inhibition was observed on telomeric DNA substrates using T7 DNA polymerase. These results suggest that TRF1, when bound to duplex telomeric DNA, serves to block extension by DNA polymerases. These results are discussed with respect to the role of TRF1 in telomere length regulation.  相似文献   

14.
A novel approach to screen soluble protein domains is presented, by combining tagged random primer polymerase chain reaction (PCR) method and protein-folding assay using green fluorescent protein. Tagged random primer PCR method was used to amplify random DNA fragments from a template cDNA. The PCR products were fused to the green fluorescent protein (GFP) gene. Then solubilities of their translation products were rapidly monitored by the fluorescence of transformed Escherichia coli colonies on plates. We succeeded in cloning four soluble domains from Vav protein using this method. The present method is applicable to all proteins when cDNAs are available.  相似文献   

15.
16.
Despite extensive studies on oligonucleotide-forming triple helices, which were discovered in 1957, their possible relevance in the initiation of DNA replication remains unknown. Using sequences forming triple helices, we have developed a DNA polymerisation assay by using hairpin DNA templates with a 3′ dideoxynucleotide end and an unpaired 5′-end extension to be replicated. The T7 DNA polymerase successfully elongated nucleotides to the expected size of the template from the primers forming triple helices composed of 9–14 deoxyguanosine-rich residues. The triple helix-forming primer required for this reaction has to be oriented parallel to the homologous sequence of the hairpin DNA template. Substitution of the deoxyguanosine residues by N7 deazadeoxyguanosines in the hairpin of the template prevented primer elongation, suggesting that the formation of a triple helix is a prerequisite for primer elongation. Furthermore, DNA sequencing could be achieved with the hairpin template through partial elongation of the third DNA strand forming primer. The T4 DNA polymerase and the Klenow fragment of DNA polymerase I provided similar DNA elongation to the T7 polymerase–thioredoxin complex. On the basis of published crystallographic data, we show that the third DNA strand primer fits within the catalytic centre of the T7 DNA polymerase, thus underlying this new property of several DNA polymerases which may be relevant to genome rearrangements and to the evolution of the genetic apparatus, namely the DNA structure and replication processes.  相似文献   

17.
18.
The uvsX protein of bacteriophage T4 is a recA-type recombinase. This protein has previously been shown to help initiate DNA replication on a double-stranded DNA template by catalyzing synapsis between the template and a homologous DNA single strand that serves as primer. Here, we demonstrate that this replication-initiating activity of the uvsX protein greatly amplifies the snap-back (hairpin-primed) DNA synthesis that is catalyzed by the T4 DNA polymerase holoenzyme on linear, single-stranded DNA templates. Amplification requires the presence of uvsX protein, the DNA polymerase holoenzyme, T4 gene 32 protein, and a T4 DNA helicase, in a reaction that is modulated by the T4 uvsY protein (an accessory protein to the uvsX recombinase). The reaction products consist primarily of large networks of double-stranded and single-stranded DNA. With alkali or heat treatment, these networks resolve into dimer-length single-stranded DNA chains that renature instantaneously to reform a monomer-length double helix. A simple model can explain this uvsX protein-dependent amplification of snap-back DNA synthesis; the mechanism proposed makes several predictions that are confirmed by our experiments.  相似文献   

19.
20.
A non-radioactive PCR coupled ligase detection reaction was developed to discriminate the food spoilage yeasts Zygosaccharomyces bailii and Z. bisporus from each other and from other members of the genus. A short region of the 18S rRNA gene was amplified from boiled cell lysates and polymerase chain reaction (PCR) products used as target in the template directed ligation of two adjacent oligonucleotides. Ligated products were captured using biotin-streptavidin chemistry and detected using digoxigenin
immuno-chemiluminescence. The ligase detection reaction was able to discriminate to the species level, targeting a single base deletion. The specificity of the reaction was assessed using seven species of the genus Zygosaccharomyces . Only strains of Z. bailii and Z. bisporus gave positive results with their respective primer sets. The lower detection limit of the strategy was 10pg (3 times 107 targets) of amplified product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号