首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
J. M. Salinas 《Hydrobiologia》1991,221(1):107-117
A system is described for rapid re-attachment of the rhodophycean alga Gelidium sesquipedale (Clem.) Born. et Thur. on artificial or natural substrata. This method is applicable to industrial cultivation of this species. The function of rhizoidal clusters and the origin of germlings from the apical portion of the thalli are analyzed in relation to the re-attachment process. The role that re-attachment might play in the maintenance and spreading of natural populations and in the observed anomalies of the life-history of this species is discussed.  相似文献   

2.
Thalli of the economically important rhodophyteGelidium sesquipedale were cultured for 8 weeks under laboratory conditions, and the influence of temperature and photoperiod on the re-attachment process were studied. Four different temperatures (16, 18, 20, 22 °C) and four different photoperiods (6:18, 12:12, 14:10, 16:8) were used and the results obtained in the thalli responses such as apical growth (measured as elongation of principal apex), rhizoidal cluster production and number of necrotic patches were tested.During the re-attachment process, the best results were obtained at temperatures of 16–18 °C, when rhizoidal cluster production was high and necrotic patch development was low (18 °C) or absent (16 °C). Temperatures of 20 and 22 °C favoured high rhizoidal cluster production, but also a high production of necrotic patches that finally led to death. The results suggest that long-day photoperiods (14:10, 16:8) produce a higher number of rhizoidal cluster bands than short-day photoperiods (6:18) at the same temperature.  相似文献   

3.
Gelidium sesquipedale is the most important raw material used for extraction of agar in Spain. Based on chemostats, a system of culture for macroalgae with a continuous flow of culture medium has been developed. A stressed morphotype from the South of Spain was cultured, and the effects of different rates of NO 3 flow on growth and internal constituents were investigated in the laboratory. Cultivation was successful after optimizing factors affecting growth, such as irradiance level, renewal rate and water movement. Mass production was dependent on N supply. With a flow of 35 mol NO3 g–1 DW d–1, optimal values of growth (2.1% d–1) and biomass yield were obtained. In these conditions, biomass yield resembled the values observed in natural populations (about 500 g DW m–2 y–1). When the flow of N was reduced to 15 mol NO 3 g–1 DW d–1, growth rate and biomass yield were reduced three-fold, and were null when N was supplied as 7 mol NO 3 g–1 DW d–1. C:N ratio was an index of the physiological status of the tissue, remaining low when N was sufficient and raised to critical values when N supply was limited. Phycobiliproteins, kept at a constant irradiance level, were affected by N supply, acting as an internal nitrogen reserve, unlike chlorophylla. An effective phycobiliprotein synthesis took place when the flow of N was sufficient. Agar yield, on dry weight basis, was similar as a function of N flow, whereas agar yield of the culture was higher when N was sufficient as a result of growth not being limited by N.This system of culture, commonly used in microalgal studies, may have an important use in macroalgae as a system to obtain biomass of high quality as well as a good tool for physiological studies in conditions of continuous and controlled flow of nutrients.  相似文献   

4.
Unialgal isolates ofGelidium latifolium from northern Spain and western Norway were compared with respect to specific growth rate, when kept under different combinations of light (20, 50, 100, 200, 300 µmol m-2s-1) and temperature (17, 20, 24, 28, 31 °C.) The Norwegian isolate grew almost twice as fast as the Spanish isolate under all combinations tested. Maximum growth rate for the Norwegian and Spanish isolates was 6.71% d-1 and 3.64% d-1, respectively. The results show the existence of ecotypes and the importance of inoculum selection in the development of a mass cultivation system forGelidium.  相似文献   

5.
The relationship between O2-based gross photosynthesis (GP) and in vivo chlorophyll fluorescence of Photosystem II-based electron transport rate (ETR) as well as the relationship between effective quantum yield of fluorescence (ΦPSII) and quantum yield of oxygen evolution (ΦO_2) were examined in the green algae Ulva rotundata and Ulva olivascens and the red alga Porphyra leucosticta collected from the field and incubated for 3 days at 100 μmol m−2 s−1 in nutrient enriched seawater. Maximal GP was twice as high in Ulva species than that measured in P. leucosticta. In all species ETR was saturated at much higher irradiance than GP. The initial slope of ETR versus absorbed irradiance was higher than that of GP versus absorbed irradiance. Only under absorbed irradiances below saturation or at values of GP <2 μmol O2 m−2 s−1 a linear relationship was observed. In the linear phase, calculated O2 evolved /ETR molar ratios were closed to the theoretical value of 0.25 in Ulva species. In P. leucosticta, the estimated GP was associated to the estimated ETR only at high irradiances. ETR was determined under white light, red light emitting by diodes and solar radiation. In Ulva species the maximal ETR was reached under red light and solar radiation whereas in P. leucosticta the maximal ETR was reached under white light and minimal under red light. These results are in agreement with the known action spectra for photosynthesis in these species. In the case of P. leucosticta, GP and ETR were additionally determined under saturating irradiance in algae pre-incubated for one week under white light at different irradiances and at white light (100 μmol m−2 s−1) enriched with far-red light. GP and growth rate increased at a growth irradiance of 500 μmol m−2 s−1 becoming photoinhibited at higher irradiances, while ETR increased when algae were exposed to the highest growth irradiance applied (2000 μmol m−2 s−1). The calculated O2 evolved /ETR molar ratios were close to the theoretical value of 0.25 when algae were pre-incubated under 500–1000 μmol m−2 s−1. The enrichment by FR light provoked a decrease in both GP and ETR and an increase of nonphotochemical quenching although the irradiance of PAR was maintained at a constant level. In addition to C assimilation, other electron sinks, such as nitrogen assimilation, affected the GP–ETR relationship. The slopes of GP versus ETR or ΦPSII versus ΦO_2 were lower in the algae with the highest N assimilation capacity, estimated as nitrate reductase activity and internal nitrogen contents, i.e., Ulva rotundata and Porphyra leucosticta, than that observed in U. olivascens. The possible mechanisms to explain this discrepancy between GP and ETR are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Kurasová  I.  Kalina  J.  Štroch  M.  Urban  O.  Špunda  V. 《Photosynthetica》2003,41(2):209-219
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly PPFD730) to the photoinactivation of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Pedersen  A. 《Hydrobiologia》1987,155(1):267-275
Studies were undertaken with the aim of developing a standardized method for assessing environmental pollution in sediments by utilization of life-history data of freshwater tubificids. Similar bioassay methods have long been used for Daphnia magna, species of Ceriodaphnia and Nitocra, etc. in accordance with guidelines from the International Organization for Standardization (ISO). Tubifex tubifex was found to be the most likely candidate for such bioassays, since the species is readily kept in culture and reproduces more or less consistantly.The culturing method is slightly modified from Kosiorek (1974). This paper provides an example of the particular sensitivity of this kind of bioassay method in the detection of heavy metal contamination of lake sediments. Sediments from the oligotrophic Lake Runn were considered suitable for the purpose, since the lake receives waste water from a major mining industry in Sweden. Metal analyses of the sediments had revealed the agents likely to be causing the decreased biological activity measured in the lake; rough amplitudes for mercury: 800–3600 ng · g-1 dw, copper: 800–1800 g · g-1 dw, zinc: 3.3 – 8.1 mg · g g-1 dw have been estimated for surficial sediments.Young tubificids exposed to Lake Runn sediments did not grow much and died off within a short period of time. No reproduction occurred. Sediments from Lake Runn, when mixed with sediments from the eutrophic Lake Hjälmaren, made reproduction of T. tubifex occur only in mixtures containing less than 50% L. Runn sediments. The growth rate, reproductive success and the very timing of consecutive reproductive events of cohort individuals were found to be highly indicative of toxic effects. When additional food sources were available, however, these effects were largely masked. Therefore, extra food rations were excluded from the original method.  相似文献   

8.
The long-term effects of exogenous sucrose (3 percnt;) on growth, photosynthesis and carbon metabolism ofin vitro tomato plantlets were investigated under two sets of growth conditions that respectively favor source- or sink-limitations of photosynthesis: 1) low photosynthetic photon flux (PPF) (50 μmol m−2 · s−1) and low CO2 concentration (400 μmol mol−1) and 2) high PPF (500 μmol m−2 · s−1 and high CO2 concentration (4000 μmol mol−1). The supply of sucrose under source-limitation conditions increased the growth, the maximal photosynthetic rate, the chl content, the maximal quantum yield of Photosystem II estimated by the Fv/Fm chl fluorescence ratio as well as the soluble sugars (hexoses, sucrose) and starch contents in roots, young and mature leaves when compared to those of photo-autotrophic plantlets. Also, sucrose feeding under these conditions strongly increased the activity of sucrose synthase (SS) (EC 2.4.1.13) in roots and young leaves whereas the activities of sucrose phosphate synthase (SPS) (EC 2.4.1.14), acid invertase (INV) (EC 3.2.1.26) and ADP-glucose pyrophosphorylase (ADPGppase) (EC 2.7.7.27) were highly stimulated in roots and mature leaves. Contrary to these observations, the supply of sucrose to plantlets developed under high PPF and CO2 concentration decreased growth and led to a somewhat lower maximal photosynthetic rate relative to photo-autotrophic plantlets. These negative responses to exogenous sucrose were accompanied by stronger accumulations of hexose and starch, larger stimulation of INV in mature leaves developed under conditions of sink limitation than those from source limitation conditions. Moreover, under high PPF and high CO2 concentration, exogenous sucrose led to a marked repression of the SPS activity and caused much lower stimulations of ADPGppase in mature leaves than those observed at low PPF and low CO2 concentration. We therefore conclude that under our experimental conditions, the interactive effects of exogenous sucrose and environmental conditions on growth and photosynthesis could be rationalized by the source-sink equilibrium of thein vitro tomato plantlets.  相似文献   

9.
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号