首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Summary Lymphoblastoid cell lines (LCLs) derived from two patients identified as ataxia telangiectasia (AT), two obligate AT heterozygotes and two controls (healthy subjects with no known genetic disease or relationship to AT patients) were compared with respect to the induction of chromosomal breaks by acute and chronic -irradiation. Although there was a considerable increase in the frequency of chromosomal breaks per cell in the LCLs of AT patients resulting from acute irradiation, the small increase occurring in the LCLs of the AT heterozygotes made it difficult to distinguish them from the controls. Following chronic -irradiation, however, the frequency of chromosomal breaks per cell in the LCLs of the AT heterozygotes occupied a significantly distinct position from that of the controls. These observations suggested that the use of chronic irradiation may be a better choice in the cytogenetic characterization of AT heterozygotes.  相似文献   

2.
Exposure to various toxicants is known to cause apoptosis in various cell types. The spermatogenic cells are particularly sensitive to various deleterious conditions including toxicant exposure. The affected cells might undergo apoptosis; however, the mechanisms may be different for different kinds of insults to the cells. In the present study, we looked into the mechanisms involved in apoptosis after exposure of testicular cells from mice to two different chemicals, diethyl maleate (DEM) and tert-butyl hydroperoxide (TBHP). For the study, cells were maintained for 4 h under various treatments: control (media only), 0.25 mM DEM, 0.5 mM DEM, 0.25 mM TBHP, and 0.5 mM TBHP. The treated cells were then harvested for various estimations, viz. viability, reduced and oxidized glutathione, redox ratio, free radical generation, and ethidium bromide/acridine orange co-staining. mRNA was extracted for RT-PCR analysis of Caspase 3, Caspase 8, Caspase 9, p53, p21, Bax, and Bcl-2. It was observed that both the treatments resulted in decreased levels of reduced glutathione and a concomitant increase in the oxidized form and ROS levels in a dose-dependent manner. The apoptotic cell death was evident from ethidium bromide/acridine orange staining. The mRNA expression pattern of various Caspases showed progressive increase in Caspase 3 and Caspase 9 mRNA in both the treatments in a dose-dependent manner, whereas there was no change in Caspase 8 mRNA expression. p53, p21, and Bax also showed increased expression, whereas Bcl-2 expression remained unchanged in DEM treatments and increased significantly in both TBHP treatments. Hence, the present study indicates the involvement and activation of various apoptotic factors, particularly Caspase 3 and 9 along with p53, in response to exposure of testicular cells to DEM and TBHP.  相似文献   

3.
Increased oxidative stress and impaired antioxidant defense mechanisms are believed to be the important factors contributing to the pathogenesis and progression of diabetes mellitus. In this study, we have reported the effects of the streptozotocin-induced diabetes on the gene expression and the activities of two antioxidant enzymes, manganese superoxide dismutase (MnSOD) and glutathione peroxidase (GPx). We also studied the effects of two antioxidants, vitamin C and DL-α-lipoic acid (LA), on the system. Our results showed no significant change in both enzymes activities in diabetic animals compared to controls. Similarly, mRNA and protein profiles of MnSOD showed no change. Though the mRNA expression of GPx did not show any change, Western-blot analysis results demonstrated that protein expression is increased. LA, which is a water- and lipid-soluble antioxidant, decreased the protein expression of MnSOD, though mRNA levels and activities remained unchanged. LA treatment increased the GPx activities in diabetic tissues, significantly, and RT-PCR and Western-blot analysis results demonstrated that this increase in activity is not regulated at the gene level, as both mRNA and protein levels did not change. Supplementing the animals with vitamin C, a powerful water-soluble antioxidant, increased the mRNA expression of MnSOD, though the protein expression and the activity did not change statistically. On the other hand GPx activity increased significantly through post-translational modifications, as both mRNA and protein expressions did not change. These results together with our previous findings about the gene expressions of catalase and Cu–Zn SOD indicate the presence of very intricate control mechanisms regulating the activities of antioxidant enzymes in order to prevent the damaging effects of oxidative stress.  相似文献   

4.
Wang X  Gu C  He W  Ye X  Chen H  Zhang X  Hai C 《Biochimie》2012,94(8):1705-1717
It is well known that reactive oxygen species (ROS) plays a role in the pathogenesis of insulin resistance which is the hallmark of type 2 diabetes. However, it is still needed to clarify the mechanism underlying insulin resistance. Glucose oxidase (GOD) is an oxi-reductase catalyzing the conversion of glucose to glucolactone, which is further converted to glucuronic acid and H(2)O(2). The present study was designed to establish a rat model of insulin resistance using GOD and to investigate possible mechanisms. The results showed that three days administration of GOD could significantly increase fasting blood glucose, resulting in impaired glucose and insulin tolerance. Moreover, GOD disrupted insulin signaling both in rats and in hepatocytes, as evidenced by decreased phosphorylation of insulin-stimulated Akt, GSK3 and FOXO1α. Furthermore, GOD administration decreased the expression of PPARγ, alterated the phosphorylation of MAPKs, including p38, ERK and JNK, increased the expression of GRP78 and reduced the expression of PGC-1α and decreased the activities of ATPase and respiratory complexes, all of which have been reported to contribute to insulin resistance. Redox balance was evaluated by detecting the expression of antioxidant defenses and ROS generation. After the treatment with GOD, nuclear factorerythroid 2 p45-related factor 2 (Nrf2)-regulated antioxidant enzymes were damaged and ROS production increased significantly. N-acetyl-L-cysteine (NAC), a potent antioxidant, could notably inhibit these effects of GOD. Although further studies are needed to investigate the clear mechanism, these data also support the conclusion that, if not the most early event, ROS generation is the most important event that plays a central role in the pathogenesis of insulin resistance. Overall, our study established an insulin resistant animal model induced by GOD, elucidated the importance of ROS in pathogenesis of insulin resistance and provided the clue for further studies on the underlying mechanisms.  相似文献   

5.
Estrogen action is mediated by the two receptor isoforms: estrogen receptor alpha and beta. Both receptors are expressed in human prostate tissue and have different action profiles. ERalpha is positively correlated with the malignancy of prostate cancer, while ERbeta may protect against abnormal prostate cell growth. 17β-Estradiol (E2), at least in part, induces cancerous transformations by causing deleterious mutations through the formation of reactive oxygen species (ROS). The aim was to study the effect of E2 on oxidative stress and the expression of uncoupling proteins (UCPs) and antioxidant enzymes in several prostate cancer cell lines with different ERalpha/ERbeta ratios. The cell prostate lines with a lower ERalpha/ERbeta ratio had lower oxidative stress, which could be partially explained by the increased expression of antioxidant enzymes and UCPs. Moreover, the action of E2 on the expression of antioxidant enzymes and UCPs was dual and dependent on the ERalpha/ERbeta ratio. Treatments with 0.1 nM E2 in cell lines with high ERalpha/ERbeta ratio produced a decrease in antioxidant enzymes and UCPs levels, with an increase in ROS production. These effects disappeared when the treatment was done in the presence of an ERalpha antagonist (MPP). In the cell lines with greatest levels of ERbeta and the lowest ERalpha/ERbeta ratio, E2 treatment caused the up-regulation of antioxidant enzymes and UCPs with a look-up decrease in ROS production. These effects were reversed when the cells were treated with E2 in the presence of an ERbeta antagonist (R,R-THC). On the whole, our results suggest a dual E2 effect; increasing or decreasing oxidative stress in part by modulation of UCPs and antioxidant enzymes according to the abundance ERbeta and ERalpha/ERbeta ratio in prostate cancer cell lines.  相似文献   

6.
Cytotoxicity against two human bladder carcinoma cell lines (BT-A and BT-B) was investigated using human peripheral blood mononuclear cells (PBMC) stimulated with viable bacillus Calmette-Guérin (BCG) or sonicated BCG (s-BCG). We applied a cytotoxicity assay based on radioactive labelling of tumour cells by incorporation ofl[3H]methionine. The results were compared with the cytotoxicity exerted by lymphokine-activated killer (LAK) cells generated by interleukin-2 (IL-2) and interferon (IFN). BCG-stimulated PBMC showed a cytotoxic potential against BT-A and BT-B comparable to that of IFN-generated LAK cells, but this did not reach the level of IL-2-generated LAK cells. We termed these cytotoxic effectors BCG-activated killer (BAK) cells. In contrast to their cytotoxicity against bladder tumour cells. BAK cells did not differ from unstimulated PBMC in the killing of K562 cells. Only viable but not sonicated BCG was able to induce cytotoxicity against BT-A and BT-B. We could demonstrate the presence of the cytokines IFN, IL-2, tumour necrosis factor (TNF) and TNFß in the supernatants harvested during the generation of BAK cells. Monoclonal antibodies neutralizing IFN were able to inhibit BCG-mediated cytotoxicity, giving evidence of the involvement of IFN in the induction of BAK cells. Furthermore, we performed experiments to investigate the cytotoxic potential of distinct cell populations. The cells effective in BCG-activated killing of bladder tumour cells could be localized within the CD8+/CD56+ lymphocyte subset. CD4+ cells and macrophages did not exhibit cytolytic activity. Our findings imply that the activation by BCG of CD8+/CD56+ killer cells might be an important antitumoral mechanism during BCG therapy against superficial urothelial bladder cancer.  相似文献   

7.
The processes of cell death were studied in vitro in populations of oocytes isolated from prepubertal rats. In order to identify apoptosis, the externalized phosphatidylserine was recognized with Annexin-V coupled to FITC and the fragmentation of DNA was demonstrated by means of electrophoresis. Oocytes were tested for autophagy by means of the incorporation of monodansylcadaverine and monitoring Lc3-I/Lc3-II by western blot. The expression of mRNA marker genes of autophagy and of apoptosis was studied by means of RT–PCR in pure populations of oocytes. Some oocytes expressed at least one of the following markers: caspase-3, lamp1 and Lc3. Some oocytes were positive to Annexin-V or to monodansylcadaverine. However, most of them were simultaneously positive to both markers. The relative frequency of oocytes simultaneously positive to markers of apoptosis and autophagy did not change in the different ages studied. The transformation of Lc3-I in Lc3-II was present in all populations of oocytes studied. The mRNAs for caspase-3, lamp1 and Lc3 were present in all populations of oocytes analyzed. Our results demonstrate that oocytes of rats from new born to prepubertal age are eliminated by means of three different cell death processes: apoptosis, autophagy and a mixed event in which both routes to cell death participate in the same cell.  相似文献   

8.

Food proteins from different sources can provide beneficial effects on human health by releasing the bioactive peptides that are integral part of their native structure. In this study, we tested the biological potential of hempseed protein hydrolysates (HPHs) obtained from hempseed cake protein isolate. The HPHs were prepared by enzyme hydrolysis using three different proteases of microbial origin: Alcalase®, Neutrase® and Protamex®. The antioxidant activity of the obtained hydrolysates was determined by oxygen radical absorbance capacity (ORAC) assay, while the proliferative effects on normal (HaCaT) and cancer (HeLa) cells were determined by the CellTiter 96® AQueous One Solution Reagent (MTS) assay. HPHs showed dose-dependent antiproliferative effects on HeLa cells and stimulatory effects on the proliferation of HaCaT cells. HPH obtained by Neutrase® (HPH-N) showed the highest antioxidant activity expressed as an ORAC value. The protective effect of HPH-N on H2O2-induced oxidative stress in normal and cancer cells was evaluated and 1 mg/mL of HPH-N significantly reduced the formation of intracellular reactive oxygen species (ROS) in both cell lines. The obtained results indicate the benefits of HPHs as potential natural antioxidants for the food industry and contribute to the growing trend of utilizing hempseed by-products.

  相似文献   

9.
In the present study, water extract of dried fruit of Zyzyphus Jujube was tested for its possible anticancer effect and induction of apoptosis on human tumor cell lines, HEp-2, HeLa and Jurkat cell lines. The inhibitory effect of water extract of this fruit on cell proliferation was assessed by MTT colorimetric assay. The induction of apoptosis of this extract was analyzed by DNA fragmentation analysis. Zyzyphus Jujube extract showed inhibitory effects on mentioned cell lines. Jurkat leukemic line was found the most sensitive cells with IC50 of 0.1 μg mL−1. Our study also showed a typical DNA laddering in this cell line. The present study showed cytotoxic activity of Zyzyphus Jujube on tumor cells. Although Zyzyphus Jujube has useful compounds for medical applications.  相似文献   

10.
Purpose  The proper induction of cellular immunity is required for effective bacillus Calmette-Guérin (BCG) immunotherapy of bladder cancer. It has been known that BCG stimulation of human peripheral blood mononuclear cells (PBMC) leads to the generation of effector cells cytotoxic to bladder cancer cells in vitro. To improve BCG therapy, we previously developed human interferon (IFN)-α 2B secreting recombinant (r) BCG (rBCG-IFN-α). We demonstrated that rBCG-IFN-α augmented T helper type 1 (Th1) cytokine IFN-γ production by PBMC. In this study, we further investigated whether rBCG-IFN-α could also enhance PBMC cytotoxicity toward bladder cancer cells. Materials and methods  PBMC were prepared from healthy individuals, left alone or stimulated with rBCG-IFN-α or control MV261 BCG, and used as effector cells in 51Cr-release assays. Human bladder cancer cell lines T24, J82, 5637, TCCSUP, and UMUC-3 were used as target cells. To determine the role of secreted rIFN-α as well as endogenously expressed IFN-γ and IL-2 in inducing the cytotoxicity, PBMC were stimulated with rBCG-IFN-α in the presence of neutralizing antibodies to IFN-α, IFN-γ or IL-2. To determine the role of natural killer (NK) and CD8+ T cells in inducing the cytotoxicity, both cell types were isolated after BCG stimulation of PBMC and used as effector cells in 51Cr-release assays. Results  Non-stimulated PBMC showed basal levels of cytotoxicity against all target cell lines tested. MV261 BCG increased the PBMC cytotoxicity by 1.8- to 4.2-fold. rBCG-IFN-α further increased the PBMC cytotoxicity by up to 2-fold. Elevated production of IFN-γ and IL-2 by PBMC was observed after rBCG-IFN-α stimulation. Blockage of IFN-α, IFN-γ or IL-2 by neutralizing antibodies during rBCG-IFN-α stimulation reduced or abolished the induction of PBMC cytotoxicity. Both NK and CD8+ T cells were found to be responsible for the enhanced PBMC cytotoxicity induced by rBCG-IFN-α with the former cell type being more predominant. Conclusions  rBCG-IFN-α is an improved BCG agent that induces enhanced PBMC cytotoxicity against bladder cancer cells in vitro. This rBCG strain may serve as an alternative to BCG for the treatment of superficial bladder cancer.  相似文献   

11.
In order to detect aneuploidy in interphase human lymphocytes, both in vivo and in vitro, fluorescence in situ hybridization (FISH) was carried out on binucleated cells cytokinesis-blocked by cytochalasin B at the first mitosis after phytohemagglutinin stimulation. A pericentric chromosome-21-specific DNA probe prepared from yeast artificial chromosome clone 881D2 by the polymerase chain reaction was employed. One thousand binucleated cells per individual were scored from cultures from twelve trisomy 21 patients aged 0.01-8.9 years (mean 4.3 years) and 20 normal children of similar age. Of trisomy 21 patients, increased frequencies of disomic cells in vivo (1.690+/-1.070%) and cells containing six signals with nondisjunction (0.822+/-0.554%) were found, compared with those of monosomic 21 cells in vivo (0.265+/-0.130%) and cells containing four signals with nondisjunction in normal children (0.369+/-0.250%; P=0.000 and P=0.000, respectively). These results show that malsegregation of chromosome 21 occurs more often in trisomic 21 cells than in disomic cells from normal children. The frequency of nondisjunction was significantly higher than the loss of chromosome 21 in both cultured trisomic (0.822+/-0.554% vs 0.043+/-0.049%, P=0.000) and disomic (0.369+/-0.250% vs 0.010+/-0.30%, P=0.000) cells. Comparisons of in vivo and in vitro data on aneuploidy indicate that a cell selection mechanism may exist in vivo. All these results show that FISH, with a chromosome-specific probe, on binucleated lymphocytes is a powerful tool for simultaneously detecting mosaic cell lines in vivo and malsegregation (loss and nondisjunction) of a corresponding chromosome in vitro in the same cell population.  相似文献   

12.
13.
14.
15.
Using electron paramagnetic resonance, the dose-dependence effect of dopamine on methemoglobin formation in erythrocytes of patients with Parkinson’s disease under the activation of oxidative stress induced by acrolein and the possibilities for the correction of this pathological process using carnosine in vitro experiments have been examined. It was shown that incubation of erythrocytes with 1.5 mM dopamine did not change the methemoglobin content, while incubation with 15 mM dopamine caused a two fold increase in the methemoglobin content compared to its initial level; 10 μM acrolein increased methemoglobin formation threefold. Administration of 15 mM dopamine and, after 1 h, 10 μM acrolein to the incubation system increased methemoglobin formation tenfold compared to its initial level. Preincubation of erythrocytes with 5 mM carnosine followed by acrolein addition prevented the increase in the methemoglobin content, while carnosine had no effect on methemoglobin formation induced by dopamine.  相似文献   

16.

Objectives

To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.

Results

By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells.

Conclusions

Oxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.
  相似文献   

17.
The responses of Ri-TDNA-transformed roots and arbuscular mycorrhizal fungi established on Ri-TDNA-transformed roots to lead-amended media was investigated in vitro. At exposure to increasing concentrations of lead (2–10 mg/l[ppm]), three Ri-TDNA-transformed root clones viz., Swa, Swb and Swc, exhibited profuse growth. At exposure to increasing concentrations of lead (0.1–5 ppm), the dual cultures of Ri-TDNA-transformed roots and arbuscular mycorrhizal fungi., Glomus lamellosum/Swa, Glomus intraradices/Swb and Glomus proliferum/Swc, exhibited tolerance to 5 ppm of lead. When subjected to one physiological stress, either exposure to Pb or inoculation with AM fungi, Ri-TDNA-transformed root clones exuded more phenols in the growth medium than retained in the roots. When subjected to dual physiological stress, mycorrhizal Ri-TDNA-transformed roots growing on Pb-enriched medium, the total phenol content increased in the roots and exudation into the medium decreased.  相似文献   

18.
19.
Summary Few clinical responses have occurred in preliminary studies using the cytokines tumor necrosis factor (TNF) or interferon (IFN) in cancer patients. This may be related to the observation that many malignant cell lines are resistant to lysis by these cytokinesin vitro. Resistance to lysis by TNF or IFN in many cells is controlled by a protein-synthesis-dependent mechanism, such that when protein synthesis is inhibited cells become sensitive to lysis by these cytokines. Because there is some evidence that TNF and IFN act through different lytic mechanisms and are opposed by different resistance mechanisms, we treated a panel of eight cell lines, five derived from human cervical carcinomas (ME-180, MS751, SiHa, HT-3, and C-33A) and three derived from ovarian carcinomas (Caov-3, SK-OV-3, and NIH: OVCAR-3) with both TNF and IFN to determine whether such combination treatment might maximizein vitro cell lysis. Our results showed that pretreatment with IFN followed by exposure to TNF in the presence of protein synthesis inhibitors increased lysis of seven of the eight cell lines above that seen with either TNF or IFN and inhibitors of protein synthesis. Only the cell line C-33A was resistant to lysis by TNF and IFN, when exposed to these agents both alone and in combination with protein synthesis inhibitors. Clinically, combining the cytokines TNF and IFN with protein synthesis inhibitors may maximize thein vivo lytic effects of these cytokines.Supported by American Cancer Society Career Development Award 90-221  相似文献   

20.
An efficient protocol for Kentucky bluegrass (Poa pratensis L.) in vitro culture was established using shoot apices of seedlings as explants. The optimal procedure of this protocol for majority of the genotypes was that meristematic cell clumps and small calluses were firstly induced from the bases of explants on initial culture medium supplemented with 0.9 μM 2,4-d and 8.9 μM 6-BA for 20 d, then were separated and transferred to shoot clumps induction medium containing 8.9 μM 6-BA for the formation of multiple shoot clumps. The percentage of multiple shoot clumps and numbers of shoots per clump were deeply related with the combinations of different plant growth regulators, duration of initial culture, the intensity of illumination and genotypes. Histological observation of the induced explants revealed that the meristematic cell clumps were produced from repeated division of the cortical cells and original meristematic primodium cells of explants, and the multiple shoots were formed via organogenesis pathway in the meristematic cell regions of cultures on shoot clumps induction medium. In this study, plantlets were efficiently regenerated on large scale from seven cultivars of Kentucky bluegrass. Hence the meristematic cell clumps and small calluses in this protocol could be considered good targets for genetic transformation of Kentucky bluegrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号