首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the “continuity versus discontinuity” discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother–infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.  相似文献   

2.
Bonobos have been observed to use socio-sexual behavior at higher frequency than chimpanzees. Little is known about the developmental influences that shape this behavior in bonobos. We compared the social sexual behavior of wild-born bonobo (n = 8) and chimpanzee (n = 16) infants in an experimental feeding test. Subjects of both species were orphans of the bushmeat trade living at sanctuaries in peer groups. During the experiment, chimpanzee infants never had socio-sexual interactions with one another. In contrast, bonobo infants had socio-sexual interactions significantly more than the chimpanzee infants and more often when food was presented. During these socio-sexual interactions, bonobo infants did not show a preference for heterosexual partners or genital–genital positioning that is reproductive in adults (e.g. a dorso–ventral posture). These findings suggest that the socio-sexual behavior previously observed in various captive and wild bonobos is species-typical. Wild-born bonobos originating from a large geographical range develop this behavior long before puberty and without the need for adults initiating such behavior or acting as models for observational learning. Meanwhile, chimpanzee infants of the same age with similar rearing history show no signs of the same socio-sexual behavior. Results are interpreted regarding hypotheses for the evolution of bonobo psychology.  相似文献   

3.
Damaliscus pygargus is an endemic species in South Africa belonging to the contemporary antelope tribe Alcelaphine. The species has been subdivided into two subspecies based upon phenotypic differences and historical geographic isolation. We found D. p. pygargus (bontebok) and D. p. phillipsi (blesbok) to be significantly differentiated based on microsatellite and mtDNA control region markers. Bontebok genetic diversity was depauperate with just one mtDNA haplotype, not found in blesbok populations, and reduced heterozygosity and polymorphism at microsatellite DNA loci compared to the blesbok. Erosion of molecular genetic variation in bontebok may have been due to anthropogenic impact causing isolation and reduced population size. Our data based on 34 bontebok and 42 blesbok indicate that the classification of alpha taxonomy should be reconsidered in this genus (in support of earlier similar suggestions), and that careful management should seek to avoid hybridization and retain the remaining diversity in the bontebok.  相似文献   

4.

Background

The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos.

Methodology/Principal Findings

PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding.

Conclusions and Significance

The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility.  相似文献   

5.
In long–lived social mammals such as primates, individuals can benefit from social bonds with close kin, including their mothers. In the patrilocal chimpanzee (Pan troglodytes spp.) and bonobo (Pan paniscus), sexually mature males reside and reproduce in their natal groups and can retain post-dependency bonds with their mothers, while immatures of both sexes might also have their paternal grandmothers available. However, quantitative information on the proportion of males and immatures that co-reside with both types of these close female relatives is limited for both species. Combining genetic parentage determination and group composition data from five communities of wild chimpanzees and three communities of wild bonobos, we estimated the frequency of co-residence between (1) mature males and their mothers, and (2) immature males and females and their paternal grandmothers. We found that adult males resided twice as frequently with their mothers in bonobos than in chimpanzees, and that immature bonobos were three times more likely to possess a living paternal grandmother than were immature chimpanzees. Patterns of female and male survivorship from studbook records of captive individuals of both species suggest that mature bonobo females survive longer than their chimpanzee counterparts, possibly contributing to the differences observed in mother–son and grandmother–immature co-residency levels. Taking into account reports of bonobo mothers supporting their sons'' mating efforts and females sharing food with immatures other than their own offspring, our findings suggest that life history traits may facilitate maternal and grandmaternal support more in bonobos than in chimpanzees.  相似文献   

6.

Background

The human apolipoprotein E (APOE) gene is polymorphic, with three primary alleles (E2, E3, E4) that differ at two key non-synonymous sites. These alleles are functionally different in how they bind to lipoproteins, and this genetic variation is associated with phenotypic variation for several medical traits, including cholesterol levels, cardiovascular health, Alzheimer’s disease risk, and longevity. The relative frequencies of these alleles vary across human populations, and the evolution and maintenance of this diversity is much debated. Previous studies comparing human and chimpanzee APOE sequences found that the chimpanzee sequence is most similar to the human E4 allele, although the resulting chimpanzee protein might function like the protein coded for by the human E3 allele. However, these studies have used sequence data from a single chimpanzee and do not consider whether chimpanzees, like humans, show intra-specific and subspecific variation at this locus.

Methodology and Principal Findings

To examine potential intraspecific variation, we sequenced the APOE gene of 32 chimpanzees. This sample included 20 captive individuals representing the western subspecies (P. troglodytes verus) and 12 wild individuals representing the eastern subspecies (P. t. schweinfurthii). Variation in our resulting sequences was limited to one non-coding, intronic SNP, which showed fixed differences between the two subspecies. We also compared APOE sequences for all available ape genera and fossil hominins. The bonobo APOE protein is identical to that of the chimpanzee, and the Denisovan APOE exhibits all four human-specific, non-synonymous changes and appears functionally similar to the human E4 allele.

Conclusions

We found no coding variation within and between chimpanzee populations, suggesting that the maintenance of functionally diverse APOE polymorphisms is a unique feature of human evolution.  相似文献   

7.

Background

Many group–living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male–mediated gene flow might occur through rare events such as extra–group matings leading to extra–group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed.

Methodology/Principal Findings

Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y–chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y–chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y–haplotypes within western chimpanzee and bonobo groups is best explained by successful male–mediated gene flow.

Conclusions/Significance

The similarity of inferred rates of male–mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male–mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos.  相似文献   

8.
The mitochondrial DNA D-Loop region was sequenced, analyzed and used as a molecular marker for populations of chimpanzee (Pan troglodytes), bonobo (P. paniscus) and gorilla (Gorilla gorilla and G. beringei), and also compared with data previously reported for these taxa. In Gorilla, a main disjunction between western (G. gorilla) and eastern (G. beringei, including G. b. graueri) species was observed, as well as high mitochondrial diversity within the western species. The genetic distance values within G. gorilla (0.14) were higher than those between subspecies (eastern lowland and mountain 0.12). Likewise, values of genetic diversity within this species (0.05) were higher than those between species (western and eastern lowland gorilla 0.04). Similarly, in genus Pan a main differentiation between western (P. t. verus) and central forms (P. t. troglodytes and P. t. schweinfurthii) was observed. The obtained values of genetic distance and genetic diversity revealed that the central subspecies are closer to each other than either of them is to the western one, while bonobos composed a distinct clade that expresses a well-defined specific identity. The current distribution, phylogeny and levels of genetic diversity in African great ape populations are consistent with the hypothesis that Pleistocene climatic events led to cyclical periods of isolation in forest refugia followed by expansion and dispersal. The implications of this high level of genetic diversity for taxonomic classification, wildlife management and conservation are discussed.  相似文献   

9.
The timing of tooth mineralization in bonobos (Pan paniscus) is virtually uncharacterized. Analysis of these developmental features in bonobos and the possible differences with its sister species, the chimpanzee (P. troglodytes), is important to properly quantify the normal ranges of dental growth variation in closely related primate species. Understanding this variation among bonobo, chimpanzee and modern human dental development is necessary to better contextualize the life histories of extinct hominins. This study tests whether bonobos and chimpanzees are distinguished from each other by covariance among the relative timing and sequences of tooth crown initiation, mineralization, root extension, and completion. Using multivariate statistical analyses, we compared the relative timing of permanent tooth crypt formation, crown mineralization, and root extension between 34 P. paniscus and 80 P. troglodytes mandibles radiographed in lateral and occlusal views. Covariance among our 12 assigned dental scores failed to statistically distinguish between bonobos and chimpanzees. Rather than clustering by species, individuals clustered by age group (infant, younger or older juvenile, and adult). Dental scores covaried similarly between the incisors, as well as between both premolars. Conversely, covariance among dental scores distinguished the canine and each of the three molars not only from each other, but also from the rest of the anterior teeth. Our study showed no significant differences in the relative timing of permanent tooth crown and root formation between bonobos and chimpanzees. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Twenty-one highly variable microsatellite loci were used to investigate the genetic diversity and variation of Odontobutis potamophila in China. A total of 160 samples from five wild populations (Dangtu, Sheyang, Yuyao, Minjiang and Donxishan) were genotyped. All of the 21 microsatellite loci tested in this study showed polymorphism. The number of allele per locus ranged from 5.05 to 9.90. Locus 87a of Minjiang population had a 259-bp characteristic allele. The average observed heterozygosity and expected heterozygosity ranged from 0.33 to 0.62 and from 0.40 to 0.70, respectively. The pair-wise FST tests and NJ trees of the five O. potamophlia populations revealed that Dangtu, Sheyang, Yuyao and Dongxishan were genetically close to one another and distinct from Minjiang. Far genetic distances were observed among populations from distant geographical areas. This result provided guide for the use of O. potamophila breeds and the protection of the species.  相似文献   

11.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   

12.
Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L. ) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice. Received: 19 May 1999 / Accepted: 26 April 2000  相似文献   

13.

We investigated the feasibility of using genetic techniques to census pine marten (Martes martes) populations by genotyping non-invasively collected samples (plucked hair and scats), with particular reference to the genetically depauperate Irish population. Novel real-time polymerase chain reaction methods were developed for species and sex identification, targeting short DNA sequences. Background genetic variation at 17 microsatellite loci was very low in the Irish population, with an average of 2.29 alleles per locus and expected heterozygosity of 0.35. Despite such low polymorphism, a panel of eight loci with a sibling probability of identity of 0.011 reliably identified individual pine marten and their gender, as determined by reference to genotypes of live trapped individuals. With high nuclear DNA amplification success rates (93.8%) and low genotyping error rates (1.8%), plucked hairs may represent a more reliable and cost-effective DNA source than scats for monitoring populations of this elusive carnivore, and similar taxa such as the sympatric stone marten Martes foina.

  相似文献   

14.
We report the characterization of 15 new single nucleotide polymorphism markers for a threatened species, the chimpanzee (Pan troglodytes), developed using a targeted gene approach. These markers are derived from the Y chromosome and autosomal regions of the genome and show frequency differences between chimpanzee subspecies from central and western Africa. These single nucleotide polymorphism markers are the first to be designed for the genotyping of wild chimpanzee populations and will provide a useful addition to the genetic tools employed for the conservation management of this threatened species.  相似文献   

15.
We investigated intra- and interspecific differences in life history and reproductive parameters in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We compare the parameters of wild and captive females in order to shed light on the influence of habitat or specific differences or both on reproduction. We present new and additional information on reproductive parameters from captive bonobos and chimpanzees. Captive chimpanzees birth more live offspring and have a shorter interbirth interval, but experience higher infant mortality than captive bonobos. Although captive bonobo females tend to start reproduction at a younger age than chimpanzees, this is effectively only so for wild-born females of both species. Ultimately both species reach the same rate of production of offspring surviving to 5 yr. These results contrast with data from the wild. Wild bonobos tend to have higher reproductive success, a higher fertility rate and a shorter interbirth interval than wild chimpanzees. Reproduction is similar for wild and captive bonobos, which suggests that they are producing at their maximum under both conditions. Overall captive chimpanzees perform better than their wild conspecifics, probably because of lower feeding competition. Infant survival is the only specific difference not affected by captivity. Bonobo infants survive better, which suggests that chimpanzee infants are more at risk. We argue that the interspecific variation in reproductive parameters in captivity is related to the different influence of captivity on reproduction and different pressures of external sources of infant and juvenile mortality.  相似文献   

16.
The muriqui or woolly spider monkey (Brachyteles arachnoids) is an endangered primate endemic to the Atlantic Forest of Brazil, <5% of which remains. The known muriqui population consists of <700 individuals separated into approximately 15 geographically isolated forest fragments. I present data on the distribution of genetic variation within and between two such remnant populations (FE and FBR) and summarize the implications of these results for long-range management of species genetic diversity. Eleven of 32 allozyme loci were polymorphic, representing an overall level of polymorphism of 34.4% and a mean heterozygosity per locus of 11%. Both values are among the highest reported for New World monkeys. Genetic differentiation between the two localities is highly significant (FST = 0.413, p < 0.001). Genetic distance between them is an order of magnitude greater than that between other populations of platyrrhine subspecies, but this could be an artifact of the small sample size from FBR. High levels of genetic diversity apparently characteristic of this species persist because (1) fragmentation and size reduction of muriqui populations has occurred very rapidly relative to the muriqui life span—although both polymorphism and heterozygosity were lost between generations in the largest population, the high genetic diversity present in the parent population was still in evidence; and (2) genetic diversity before population fragmentation by human activity was not distributed uniformly throughout the species' historic distribution. Thus, remnant muriqui populations are important genetic reservoirs of alleles that are unique or rare in the species gene pool as a whole. These results emphasize the need for the integration of conservation management efforts throughout the species range.  相似文献   

17.
Electrophoretic variation was examined in 14 populations of tetraploid Deschampsia mackenzieana, an endemic of the Athabasca sand dunes in northern Saskatchewan, Canada, and 20 populations of its geographically widespread diploid progenitor, D. cespitosa. Three of the D. cespitosa populations were sympatric with the endemic on the Athabasca sand dunes. Populations of the endemic were found to have fewer alleles per locus (1.22 vs. 1.52), fewer alleles per polymorphic locus (2.17 vs. 2.70), lower percent polymorphic loci (18.9 vs. 30.5), and lower heterozygosity (0.062 vs. 0.119) than progenitor populations. Species level genetic diversity parameters also indicated that D. mackenzieana was genetically depauperate relative to its progenitor D. cespitosa. Deschampsia mackenzieana had no novel alleles but did share one allele with sympatric progenitor populations that did not occur in populations of D. cespitosa from other habitats. Although both species were found to partition most of their genetic diversity within populations, D. mackenzieana did have more of its limited genetic diversity partitioned among populations than D. cespitosa. The close genetic relationship between D. mackenzieana and sympatric populations of D. cespitosa may suggest the endemic tetraploid evolved from the sympatric diploid gene pool in the Athabasca sand dune region. The low levels of genetic diversity in D. mackenzieana suggest a restricted origin with limited gene flow from the progenitor since speciation.  相似文献   

18.
Understanding a wider range of genotype–phenotype associations can be achieved through ecological and evolutionary studies of traditional laboratory models. Here, we conducted the first large‐scale geographic analysis of genetic variation within and among wild zebrafish (Danio rerio) populations occurring in Nepal, India, and Bangladesh, and we genetically compared wild populations to several commonly used lab strains. We examined genetic variation at 1832 polymorphic EST‐based single nucleotide polymorphisms (SNPs) and the cytb mitochondrial gene in 13 wild populations and three lab strains. Natural populations were subdivided into three major mitochondrial DNA clades with an average among‐clade sequence divergence of 5.8%. SNPs revealed five major evolutionarily and genetically distinct groups with an overall FST of 0.170 (95% CI 0.105–0.254). These genetic groups corresponded to discrete geographic regions and appear to reflect isolation in refugia during past climate cycles. We detected 71 significantly divergent outlier loci (3.4%) and nine loci (0.5%) with significantly low FST values. Valleys of reduced heterozygosity, consistent with selective sweeps, surrounded six of the 71 outliers (8.5%). The lab strains formed two additional groups that were genetically distinct from all wild populations. An additional subset of outlier loci was consistent with domestication selection within lab strains. Substantial genetic variation that exists in zebrafish as a whole is missing from lab strains that we analysed. A combination of laboratory and field studies that incorporates genetic variation from divergent wild populations along with the wealth of molecular information available for this model organism provides an opportunity to advance our understanding of genetic influences on phenotypic variation for a vertebrate species.  相似文献   

19.
For some traits, the human genome is more closely related to either the bonobo or the chimpanzee genome than they are to each other. Therefore, it becomes crucial to understand whether and how morphostructural differences between humans, chimpanzees and bonobos reflect the well known phylogeny. Here we comparatively investigated intra and extra labyrinthine semicircular canals orientation using 260 computed tomography scans of extant humans (Homo sapiens), bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Humans and bonobos proved more similarities between themselves than with chimpanzees. This finding did not fit with the well established chimpanzee – bonobo monophyly. One hypothesis was convergent evolution in which bonobos and humans produce independently similar phenotypes possibly in response to similar selective pressures that may be associated with postural adaptations. Another possibility was convergence following a “random walk” (Brownian motion) evolutionary model. A more parsimonious explanation was that the bonobo-human labyrinthine shared morphology more closely retained the ancestral condition with chimpanzees being subsequently derived. Finally, these results might be a consequence of genetic diversity and incomplete lineage sorting. The remarkable symmetry of the Semicircular Canals was the second major finding of this article with possible applications in taphonomy. It has the potential to investigate altered fossils, inferring the probability of post-mortem deformation which can lead to difficulties in understanding taxonomic variation, phylogenetic relationships, and functional morphology.  相似文献   

20.
Dioecy, the separation of sexes, has arisen independently many times in the course of angiosperm evolution. Avoidance of inbreeding is clearly involved in the evolution of dioecy, and as a consequence we predict that dioecious populations should maintain higher levels of genetic variation than closely related nondioecious populations. We tested that prediction by comparing allozymic variation in two closely related taxa, the monoecious and dioecious subspecies of the Mediterranean cucurbit, Ecballium elaterium. Thirteen polymorphic loci were screened for seeds sampled from 10 monoecious and 13 dioecious populations spanning the geographic ranges of the subspecies in Spain. The dioecious subspecies showed strikingly greater allelic diversity and heterozygosity than the monoecious subspecies. A hierarchical F-statistic analysis clearly demonstrated considerable genetic variation within populations for the dioecious populations, whereas for the monoecious populations almost all genetic variation resulted from differences among populations. The general pattern of homozygosity within monoecious populations suggests that they are highly inbred. In order to assess historical influences on current patterns of genetic variation, we conducted a genetic-distance analysis. The observed relationship between genetic distance and geographic distance between populations supports the hypothesis that the subspecies' current allopatric distributions on the Iberian Peninsula are the result of separate waves of colonization from the north (monoecious) and south (dioecious).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号