首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
Kim SK  Huh J  Kim SY  Byun Y  Lee DY  Moon HT 《Bioconjugate chemistry》2011,22(7):1451-1458
Heparin, as therapeutic medications, cannot be administered orally because of its hydrophilic and high molecular weight. Here, we present a new technology to enhance the absorption of heparin in the intestine through its chemical conjugation with deoxycholic acid (DOCA) that can interact with bile acid transporter in the intestine. For the ampiphilic property and complete dissolution, the modified heparin was physically complexed with dimethylsulfoxide (DMSO). The DOCA-conjugated heparin could form nanoparticles in aqueous solution, whereas it was completely dissolved when treated with above 10% DMSO solution. Molecular dynamics computation study and two-dimensional homonulcear (1)H nuclear overhauser effect spectroscopy (NOESY) NMR spectra demonstrated that one heparin molecule was chemically conjugated with two DOCA molecules that were physically interacted with six DMSO molecules within 4 ? via hydrophobic interactions and partly via hydrogen bonding. Its therapeutic efficacy was also pharmaceutically analyzed. When the DMSO-bound DOCA-conjugated heparin was orally administered into mice, its therapeutic efficacy was enhanced according to the amount of bound DMSO. Also, after oral administration of fluorescence-labeled DMSO-bound DOCA-conjugated heparin, it was circulated in the whole body for above 2 h. However, the DOCA-conjugated heparin without DMSO binding was fast eliminated after oral absorption. This study demonstrates that the interaction of structural constraints, DOCA and DMSO, with heparin can serve as a platform technology for potential macromolecule oral delivery.  相似文献   

2.
Solvent conditions play a major role in a wide range of physical properties of proteins in solution. Organic solvents, including dimethyl sulfoxide (DMSO), have been used to precipitate, crystallize and denature proteins. We have studied here the interactions of DMSO with proteins by differential refractometry and amino acid solubility measurements. The proteins used, i.e., ribonuclease, lysozyme, beta-lactoglobulin and chymotrypsinogen, all showed negative preferential DMSO binding, or preferential hydration, at low DMSO concentrations, where they are in the native state. As the DMSO concentration was increased, the preferential interaction changed from preferential hydration to preferential DMSO binding, except for ribonuclease. The preferential DMSO binding correlated with structural changes and unfolding of these proteins observed at higher DMSO concentrations. Amino acid solubility measurements showed that the interactions between glycine and DMSO are highly unfavorable, while the interactions of DMSO with aromatic and hydrophobic side chains are favorable. The observed preferential hydration of the native protein may be explained from a combination of the excluded volume effects of DMSO and the unfavorable interaction of DMSO with a polar surface, as manifested by the unfavorable interactions of DMSO with the polar uncharged glycine molecule. Such an unfavorable interaction of DMSO with the native protein correlates with the enhanced self-association and precipitation of proteins by DMSO. Conversely, the observed conformational changes at higher DMSO concentration are due to increased binding of DMSO to hydrophobic and aromatic side chains, which had been newly exposed on protein unfolding.  相似文献   

3.
The hydration state of L-Alanine and L-Proline has been assessed via 17O NMR. At neutral and basic pH, two water molecules are hydrogen bonded at the carboxylate group, one to each oxygen, whereas a third water molecule is hydrogen bonded to the protonated COOH group at acidic pH, via the hydroxyl hydrogen. The possible formation of dimers and/or higher complexes in DMSO is indicated not only from the chemical shift but also from the linewidth of the amino acids.  相似文献   

4.
Both 13C NMR and electronic absorption spectral studies on cobalt(II) carboxypeptidase A in the presence of acetate and phenylacetate provide evidence for two binding sites for each of these agents. The transverse relaxation rate T2-1 for the 13C-enriched carboxyl groups of the inhibitors is significantly increased when bound to the paramagnetic cobalt carboxypeptidase as compared to the diamagnetic zinc enzyme. The acetate concentration dependence of T2p-1 shows two inflections indicative of sequential binding of two inhibitor molecules. The cobalt-13C distances, calculated by means of the Solomon equation, indicate that the second acetate molecule binds directly to the metal ion while the first acetate molecule binds to a protein group at a distance 0.5-0.8 nm for the metal ion, consistent with it binding to one or more of the arginyl residues (Arg-145, Arg-127, or Arg-71). In the case of phenylacetate, perturbation of the cobalt electronic absorption spectrum shows that binding occurs stepwise. 13C NMR distance measurements indicate that one of the two phenylacetates is bound to the metal in the EI2 complex. These binding sites may correspond to those identified previously by kinetic means (one of which is competitive, the other noncompetitive) with peptide binding. The studies further indicate that it should be possible to map the protein interactions of the carbonyl groups of both substrate and noncompetitive inhibitors during catalysis by means of 13C NMR studies with suitably labeled substrates and inhibitors.  相似文献   

5.

Background

Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding.

Results

In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin) into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces.

Conclusions

NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.  相似文献   

6.
A single water molecule (w135), buried within the structure of rat intestinal fatty acid binding protein (I-FABP), is investigated by NMR, molecular dynamics simulations, and analysis of known crystal structures. An ordered water molecule was found in structurally analogous position in 24 crystal structures of nine different members of the family of fatty acid binding proteins. There is a remarkable conservation of the local structure near the w135 binding site among different proteins from this family. NMR cross-relaxation measurements imply that w135 is present in the I-FABP:ANS (1-sulfonato-8-(1')anilinonaphthalene) complex in solution with the residence time of >300 ps. Mean-square positional fluctuations of w135 oxygen observed in MD simulations (0.18 and 0.13 A2) are comparable in magnitude to fluctuations exhibited by the backbone atoms and result from highly constrained binding pocket as revealed by Voronoi volumes (averages of 27.0 +/- 1.8 A3 and 24.7 +/- 2.2 A3 for the two simulations). Escape of w135 from its binding pocket was observed only in one MD simulation. The escape process was initiated by interactions with external water molecules and was accompanied by large deformations in beta-strands D and E. Immediately before the release, w135 assumed three distinct states that differ in hydrogen bonding topology and persisted for about 15 ps each. Computer simulations suggest that escape of w135 from the I-FABP matrix is primarily determined by conformational fluctuations of the protein backbone and interactions with external water molecules.  相似文献   

7.
Cytochrome P450 BM-3 from Bacillus megaterium is an extensively studied enzyme for industrial applications. A major focus of current protein engineering research is directed to improving the catalytic performance of P450 BM-3 toward nonnatural substrates of industrial importance in the presence of organic solvents or cosolvents. For the latter reason, it is important to study the effect of organic cosolvent molecules on the structure and dynamics of the enzyme, in particular, the effect of cosolvent molecules on the active site's structure and dynamics. In this paper, we have studied, using molecular dynamics (MD) simulations, the F87A mutant of P450 BM-3 in the presence of DMSO as cosolvent, to understand the role of the F87A substitution for its catalytic activity. This mutant exhibits an altered regioselectivity and substrate specificity compared with wild-type; however, it has lower tolerance toward DMSO. The simulation results offer an explanation for the DMSO sensitivity of the F87A mutant. Our simulation results show that the F87 side chain prevents the disturbance of the water molecule bound to the heme iron by DMSO molecules. The absence of the phenyl ring in F87A mutant promotes interactions of the DMSO molecule with the heme iron resulting in water displacement by DMSO at the catalytic heme center.  相似文献   

8.
SERA protein is a leading candidate molecule to be included in an antimalarial vaccine. Conserved high activity binding peptides (HABP) binding to red blood cells (RBC) have been identified in this protein. One of them (6762) localising in the 18-kDa C-terminal fragment was used to induce protective immunity with negative result. Critical RBC binding residues (assessed by glycine-analogue scanning) were replaced by others having the same mass, volume and surface but different polarity, rendering some of them immunogenic as assessed by antibody production against the parasite or its proteins and protection-inducing against challenge with a highly infectious Aotus monkey-adapted Plasmodium falciparum strain.A shift in binding to purified HLA-DR allelic molecules from the same haplotype and in their reading register was found, suggesting that modified molecules had adopted a different 1H NMR 3D structure allowing a better fit into the MHCII-pept-TCR complex, thereby representing a new mechanism for inducing immune protection.  相似文献   

9.
A graph theoretical analysis of nuclear magnetic resonance (NMR) data of six different protein interactions has been presented. The representation of the protein interaction data as a graph or network reveals that all of the studied interactions are based on a common functional concept. They all involve a single densely packed hub of functionally correlated residues that mediate the ligand binding events. This is found independent of the kind of protein (folded or unfolded) or ligand (protein, polymer or small molecule). Furthermore, the power of the graph analysis is demonstrated at the examples of the Calmodulin (CaM)/Calcium and the Cold Shock Protein A (CspA)/RNA interaction. The presented approach enables the precise determination of multiple binding sites for the respective ligand molecules.  相似文献   

10.
MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.  相似文献   

11.
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational‐selection and induced‐change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational‐selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced‐change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on‐ and off‐rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single‐molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational‐selection and induced‐change processes in both binding and unbinding direction.  相似文献   

12.
The α1-acid glycoprotein (AGP) is an abundant blood plasma protein with important immunomodulatory functions coupled to endogenous and exogenous ligand-binding properties. Its affinity for many drug-like structures, however, means AGP can have a significant effect on the pharmokinetics and pharmacodynamics of numerous small molecule therapeutics. Staurosporine, and its hydroxylated forms UCN-01 and UCN-02, are kinase inhibitors that have been investigated at length as antitumour compounds. Despite their potency, these compounds display poor pharmokinetics due to binding to both AGP variants, AGP1 and AGP2. The recent renewed interest in UCN-01 as a cytostatic protective agent prompted us to solve the structure of the AGP2–UCN-01 complex by X-ray crystallography, revealing for the first time the precise binding mode of UCN-01. The solution NMR suggests AGP2 undergoes a significant conformational change upon ligand binding, but also that it uses a common set of sidechains with which it captures key groups of UCN-01 and other small molecule ligands. We anticipate that this structure and the supporting NMR data will facilitate rational redesign of small molecules that could evade AGP and therefore improve tissue distribution.  相似文献   

13.
During the solution structure determination of the Escherichia coli quorum-sensing protein SdiA in the presence of N-octanoyl-l-homoserine lactone (HSL), NMR signals were detected in (13)C-filter-(13)C-filter spectra for the bound HSL molecule. An additional set of coupled signals, independent of those of HSL, were also detected, indicating the presence of another unlabeled molecule, also bound to the labeled SdiA. Analysis of the NMR spectrum of this ligand and of the mass spectrum of the dissociated components indicates that the ligand is most likely xylose. Further analysis of xylose-bound SdiA defines a site close to the C terminus, remote from the HSL binding site. These observations provide an example of the sensitivity of high-resolution NMR experiments and their ability to detect, identify, and map the adventitious binding of a small organic molecule to a protein.  相似文献   

14.
Footprinting, capillary electrophoresis, molecular modelling and NMR studies have been used to examine the binding of a short polyamide to DNA. This molecule, which contains an isopropyl-substituted thiazole in place of one of the N-methylpyrroles, is selective for the sequence 5'-ACTAGT-3' to which it binds with high affinity. Two molecules bind side-by-side in the minor groove, but their binding is staggered so that the molecule reads six base pairs, unlike the related natural products, which tend to bind to four-base-pair sequences. The result suggests that high affinity and selectivity may be gained without resort to very large molecules, which may be difficult to deliver to the site of action.  相似文献   

15.
Dermorphin, a natural peptide opioid containing a D-Ala2 residue, has been studied in dimethyl sulfoxide (DMSO) solution by means of several one-dimensional and two-dimensional 1H nuclear magnetic resonance (NMR) methods at various fields from 80 to 600 MHz. The combined use of conventional NMR parameters and of nuclear Overhauser effect effects points to an essentially extended structure. This conformation may be, in part, the result of strong interaction of the amide groups with DMSO molecules.  相似文献   

16.
The binding of the HIV‐1 Rev protein as an oligomer to a viral RNA element, the Rev‐response element (RRE), mediates nuclear export of genomic RNA. Assembly of the Rev–RRE ribonucleoprotein (RNP) complex is nucleated by the binding of the first Rev molecule to stem IIB of the RRE. This is followed by stepwise addition of a total of ~six Rev molecules along the RRE through a combination of RNA–protein and protein–protein interactions. RRE stem II, which forms a three‐way junction consisting of stems IIA, IIB and IIC, has been shown to bind to two Rev molecules in a cooperative manner, with the second Rev molecule binding to the junction region of stem II. The results of base substitutions at the stem II junction, and characterization of stem II junction variants selected from a randomized library showed that an “open” flexible structure is preferred for binding of the second Rev molecule, and that binding of the second Rev molecule to the junction region is not sequence‐specific. Alanine substitutions of a number of Rev amino acid residues implicated to be important for Rev folding in previous structural studies were found to result in a dramatic decrease in the binding of the second Rev molecule. These results support the model that proper folding of Rev is critical in ensuring that the flexible RRE is able to correctly position Rev molecules for specific RNP assembly, and suggests that targeting Rev folding may be effective in the inhibition of Rev function. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Recording of good quality NMR spectra of the single-stranded DNA binding protein gene V of the bacteriophage M13 is hindered by a specific protein aggregation effect. Conditions are described for which NMR spectra of the protein can best be recorded. The aromatic part of the spectrum has been reinvestigated by means of two-dimensional total correlation spectroscopy. Sequence-specific assignments were obtained for all of the aromatic amino acid residues with the help of a series of single-site mutant proteins. The solution properties of the mutants of the aromatic amino acid residues have been fully investigated. It has been shown that, for these proteins, either none or only local changes occur compared to the wild-type molecule. Spin-labeled oligonucleotide-binding studies of wild-type and mutant gene V proteins indicate that tyrosine 26 and phenylalanine 73 are the only aromatic residues involved in binding to short stretches of single-stranded DNA. The degree of aggregation of wild-type gene V protein is dependent on both the total protein and salt concentration. The data obtained suggest the occurrence of specific protein-protein interactions between dimeric gene V protein molecules in which the tyrosine residue at position 41 is involved. This hypothesis is further strengthened by the observation that the solubility of tyrosine 41 mutants of gene V protein is significantly higher than that of the wild-type protein. The discovery of the so-called 'solubility' mutants of M13 gene V protein has finally made it possible to study the solution structure of gene V protein and its interaction with single-stranded DNA by means of two-dimensional NMR.  相似文献   

18.
A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF)-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.  相似文献   

19.
(-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.  相似文献   

20.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号