首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans from osteoarthritic cartilage were compared with those from normal articular cartilage. Normal proteoglycan aggregates are larger in size and more homogeneous than those in osteoarthritis. Proteoglycan monomers from both sources gave two peaks on controlled pore glass-bead chromatography. Although the retarded material from normal cartilage showed an affinity for hyaluronate, the same material from osteoarthritic cartilage did not. The hyaluronate-binding capacity of the material which is partly in the void volume and partly retarded was similar in both types of cartilage. These results suggest that in osteoarthritic cartilage the proteoglycan aggregates are smaller and more heterogeneous and that the chondroitin sulphate side chains are shorter. They also indicate that there are two populations of proteoglycan, one with its hyaluronate-binding-protein region of core protein intact and the other either possessing an inactive binding region or totally lacking it.  相似文献   

2.
Rib cartilage from growing guinea pigs and epiphyseal cartilage from Beagle puppie were separated into three fractions, representing non-mineralized, low mineralized, and high mineralized, tissue, by centrifuging finely ground material in acetone/bromoform density gradients. Following extraction under dissociative conditions, the proteoglycans were fractionated by density gradient ultracentrifugation under associative and dissociative conditions.With the onset of mineralization, the cartilage lost approximately half its content of proteoglycans. The proteoglycans remaining in the calcified cartilage differed in composition and in size from those of nonmineralized tissue. With the increased mineral content of the tissues the ratios of protein to polysaccharide, of chondroitin sulfate to keratan sulfate, and of 4-sulfated to 6-sulfated chondroitin sulfate increased in the proteoglycan fraction. Furthermore, gel chromatograms indicated decreased proportions of very high molecular weight proteoglycans, in mineralized tissue.  相似文献   

3.
Proteoglycan monomers from guinea-pig costal cartilage, bovine nasal and bovine tracheal cartilage were observed in the electron microscope after being spread in a monomolecular layer with cytochrome c. The proteoglycan molecule appeared as an extended central core filament to which side-chain filaments were attached at various intervals. The molecules from the three sources displayed great ultrastructural similarities. On average, the core filament was about 290 nm long, there were about 25 side-chain filaments per core filament, the side-chain filaments were about 45 nm long, and the distance between the attachment points of the side-chain filaments to the core filament was about 11 nm. With regard to the overall size of the molecules, no evidence of distinct subpopulations was obtained. Good correlation was found between ultrastructural data for the proteoglycan molecules and chemical data obtained by enzyme digestions and gel chromatography. Together these data strongly support the interpretation of the electron-microscopic pictures as indicating a central filament corresponding to the protein core and side-chain filaments corresponding to the chondroitin sulphate chain clusters of the proteoglycan monomers.  相似文献   

4.
5.
Chondrocyte cultures were developed from the cell outgrowths of explanted human nonarthritic and osteoarthritic human cartilage. Two significant differences in sulfated proteoglycan synthesis were demonstrated between the chondrocytes obtained in this manner. With 35SO4 to measure newly synthesized proteoglycan, we found that chondrocytes derived from osteoarthritic cartilage secreted significantly less (P less than 0.05) high density proteoglycan into the culture medium than did chondrocytes from nonarthritic cartilage after 20 hr of radiolabeling. This reduced amount of high density proteoglycan was sustained when chondrocytes were maintained in unlabeled culture medium ("chase" medium). In addition, the osteoarthritic chondrocytes secreted an increased amount of low density proteoglycan when compared with their nonarthritic counterparts. The elution profile of secreted high density proteoglycan isolated from the osteoarthritic chondrocyte culture medium was assessed by gel filtration on Sepharose CL-2B and revealed the presence of two proteoglycan subpopulations (Kav, 0.25, 0.58), whereas only one proteoglycan series (Kav, 0.37) was seen in the high density fraction of nonarthritic chondrocyte culture medium. Similar gel filtration profiles were also obtained when chondrocytes were maintained in chase medium. The results of this study demonstrated that stable differences in proteoglycan synthesis, but not in intracellular processing, exist between nonarthritic and osteoarthritic chondrocytes. The findings are noteworthy in that these differences were not previously apparent when organ-cultured cartilage was used to assess putative alterations in proteoglycans between the two groups.  相似文献   

6.
7.
Proteoglycans of the knee-joint cartilage of young normal and lame pigs   总被引:2,自引:1,他引:1  
Intensive rearing, and restricted activity, induce rapid growth in pigs, but they often become lame. Groups of normal and lame pigs reared intensively were killed when 10 or 25 weeks old. Although there were no differences in the overall composition of the knee-joint cartilage of lame and sound animals, the proteoglycans in the cartilage of the lame pigs were extracted more easily by a standardized sequential procedure and contained a higher proportion of molecules of smaller size as assessed by gel chromatography on 6% agarose and Sepharose 4B. These increased at the expense of both the larger and mediumsized molecules. Differences were most evident at 10 weeks of age, when there was twice as much of the smaller proteoglycans in the cartilage of lame pigs. Despite these size-differences, the compositions of the proteoglycans in corresponding sequential extracts of cartilage of lame and normal groups were the same, as were the changes in chemical composition that accompany development. Proteoglycans from lame animals may have undergone limited proteolysis, thus decreasing their size without changing their composition detectably. As the differences between normal and lame groups were greater at 10 weeks than at 25 weeks of age, the first weeks after birth (when the greatest changes occur in the proteoglycans and in the cartilage) may be a critical period in the maturation of articular cartilage in this species. At this time, rapid gain in weight produced by intensive rearing may be too great for the immature cartilage to bear.  相似文献   

8.
9.
10.
Separation and partial characterization of guinea-pig caseins.   总被引:11,自引:6,他引:5       下载免费PDF全文
1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin.  相似文献   

11.
Proteoglycans and pathophysiology.   总被引:1,自引:0,他引:1  
  相似文献   

12.
The content, composition and structure of proteoglycans (PGs) in adult human laryngeal cartilage (HLC) were investigated. PGs were extracted from the tissue by using two different extraction protocols. In the first protocol, PGs were extracted under dissociative conditions, 4 M guanidine HCl (GdnHCl), and in the second protocol, sequentially, with phosphate buffered saline (PBS) and solutions of increasing GdnHCl concentration (0.5, 1, 2 and 4 M). Chemical and immunological analyses of dissociate extracts (first protocol) revealed the presence of four, at least, different types of PGs. Aggrecan was the major PG, versican, decorin and biglycan being in small amounts. Galactosaminoglycan-containing PGs (GalAGPGs) represented the vast majority of total PGs present in extracts of HLC. Differential digestion with chondroitinase ABC and AC II showed that the GalAGPGs from HLC contained a significant proportion of dermatan sulphate (DS). In addition, disaccharide analysis showed that 6-sulphated disaccharides predominated in chondroitin sulphate (CS) chains. The sequential extraction (second protocol) indicated that PBS extract contained very little amount of PGs. The 0.5, 1 and 2 M GdnHCl extracts contained 6.3%, 24.5% and 15.2% of total extracted PGs, respectively. Four molar GdnHCl extracted the larger proportion, about 53%, of total PGs. This extract contained almost only proteoglycan aggregate components i.e., G1 bearing aggrecan, hyaluronan and link protein. The characterization of the aggrecan showed that it constituted a polydisperse population of monomers with an average molecular mass of 720 kDa. The glycosaminoglycans (GAGs) present were chondroitin sulphate with a M(r) of 15 kDa, and keratan sulphate (KS) with a M(r) of 10 kDa, in proportions 84% and 16%, respectively.  相似文献   

13.
Two forms of link protein, 46 and 51 kDa, are present in proteoglycan aggregates from both bovine nasal and bovine articular cartilages. Studies reported here show that the link proteins bind to concanavalin A, Lens culinaris agglutinin, Ricinus communis agglutinin, soybean agglutinin, and wheat germ agglutinin lectins. When the link proteins are eluted from these lectins with appropriate competing sugars, the 46- and the 51-kDa link proteins elute together and no separation is achieved. However, when the link proteins bound to wheat germ agglutinin are eluted with a 0 to 4 M guanidine hydrochloride linear gradient, a good separation of the 46- and 51-kDa link proteins is achieved. Wheat germ agglutinin affinity chromatography has been used on a preparative scale to isolate the 51-kDa link protein from mature bovine articular cartilage to homogeneity, in amounts sufficient to examine its effect on proteoglycan aggregate size and stability in sedimentation velocity studies. Proteoglycan aggregates were reassembled from proteoglycan monomers and hyaluronate in the absence of link protein, in the presence of both 46- and 51-kDa link proteins, and in the presence of the individual 51-kDa link protein. The sizes of the aggregates were compared in terms of sedimentation coefficients (s(0)20). The stability of the aggregates was compared in terms of the per cent aggregate present at pH 7 and 5. At pH 7, the sedimentation coefficients (s(0)20) of link-free aggregates, aggregates formed with both link proteins, and aggregates formed with 51-kDa link protein were 72, 93, and 112 S, respectively. Thus, the 51-kDa link protein has a pronounced effect on aggregate size. The link-free aggregate was grossly unstable, and only 36% aggregate was present at pH 5. The aggregate formed with both link proteins was effectively stabilized against dissociation and 79% aggregate was present at pH 5. The aggregate formed with 51-kDa link protein was not effectively stabilized against dissociation, and only 60% aggregate was present at pH 5. Thus, despite its pronounced effect on aggregate size, the 51-kDa link protein does not effectively stabilize the proteoglycan aggregate against dissociation. These results suggest that the 51-kDa link protein may selectively increase aggregate size, while the 46-kDa link protein may be required to effectively stabilize the proteoglycan aggregate against dissociation.  相似文献   

14.
The purification of guinea-pig intestinal brush borders by a rapid sucrose-gradient-centrifugation step is reported. A 29-fold increase in the maltase/DNA quotient indicates considerable purification of the brush borders from nuclei. The biological activity of the brush borders was well preserved, as demonstrated by a high recovery of human gastric-juice-mediated uptake of 57Co-labelled vitamin B-12; homogeneity and purity were confirmed by scanning electron microscopy. Both the morphological appearance and biological activity were unchanged after prolonged storage in glycerol.  相似文献   

15.
16.
A comparison was made between a vertical tube rotor and a fixed angle rotor for isopycnic centrifugation of proteoglycans. In the vertical tube rotor, isopycnic gradient was achieved much faster than in the conventional fixed angle rotor. The use of a vertical tube rotor for isopycnic centrifugation shortens the time considerably for the isolation of proteoglycans fron various tissues.  相似文献   

17.
The kinetics of incorporation of [(35)S]sulphate into slices of pig laryngeal cartilage in vitro was linear with time up to 6h. The specific radioactivities of the extracted proteoglycans (containing about 80% of the uronic acid of the cartilage) and the glycosaminoglycans remaining in the tissue after extraction were measured after various times of continuous and ;pulse-chase' radioactivity incorporation. Radioactivity was present in the isolated chondroitin sulphate after 2 min, but there was a 35min delay in its appearance in the extractable proteoglycan fraction. Fractionation of the proteoglycans by gel chromatography showed that the smallest molecules had the highest specific radioactivity, but ;pulse-chase' experiments over 5h did not demonstrate any precursor-product relationships between fractions of different size. Equilibrium density-gradient centrifugation in 4m-guanidine hydrochloride showed that among the proteoglycan fractions the specific radioactivity increased as the chondroitin sulphate content decreased, but with preparations from ;pulse-chase' experiments there was again no evidence for precursor-product relationships between the different fractions. Differences in radioactive incorporation would seem to reflect metabolic heterogeneity within the proteoglycans extracted from cartilage. This may be due either to a partial separation of different types of proteoglycans or to differences in the rates of degradation of the molecules of different size and composition as a result of the nature and specificity of the normal degrading enzymes. The results suggest that molecules of all sizes were formed at the same time.  相似文献   

18.
19.
In cartilage proteoglycan aggregates, link protein stabilizes the binding of proteoglycan monomers to hyaluronate by binding simultaneously to hyaluronate and to the G1 globular domain of proteoglycan monomer core protein. Studies reported here involving metal chelate affinity chromatography demonstrate that link protein is a metalloprotein that binds Zn2+, Ni2+, and Co2+. Zn2+ and Ni2+ decrease the solubility of link protein and result in its precipitation. However, link protein is readily soluble and functional in low ionic strength solvents from which divalent cations have been removed with Chelex 100. These observations make it possible to study the biochemical properties of link protein in low ionic strength, physiologic solvents. Studies were carried out to define the oligomeric state of link protein alone in physiologic solvents, and the transformation in oligomeric state that occurs when link protein binds hyaluronate. Sedimentation equilibrium studies demonstrate that in 0.15 M NaCl, 5 mM EDTA, 50 mM Tris, pH 7, link protein exists as a monomer-hexamer equilibrium controlled by a formation constant of 2 x 10(27) M-5, yielding a delta G' of -36 kcal/mol for the formation of the hexamer from six monomers. On binding hyaluronate oligosaccharides (HA10 or HA12), link protein dissociates to dimer. Link protein hexamer is rendered insoluble by Zn2+. Greater than 90% of the protein is precipitated by 2 mol of Zn2+/mol of link protein monomer. The binding of hyaluronate oligosaccharide by link protein strongly inhibits the precipitation of link protein by Zn2+. The link protein/hyaluronate oligosaccharide complex is completely soluble in the presence of 2 mol of Zn2+/mol of link protein. At higher molar ratios of Zn2+/link protein, the inhibitory effect of hyaluronate oligosaccharide on the precipitation of link protein is gradually overcome. Hyaluronate oligosaccharide is not dissociated from link protein by Zn2+. Hyaluronate remains bound to the link protein which is precipitated by Zn2+, or to the link protein which binds to Zn2(+)-charged iminodiacetate-Sepharose columns. Hyaluronate oligosaccharides and Zn2+ bind to different sites on link protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号