首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butyl acetate and xylene mixtures are commonly encountered from the manufacture of semi‐conductor or opto‐electronic apparatuses. The release of these substances into the ambient air may have a negative effect on the air quality. This study attempts to employ a trickle‐bed air biofilter for treating butyl acetate and xylene mixtures under different gas flow rates and influent concentrations. Almost complete VOC removal could be attained with influent carbon loadings of BA (butyl acetate) and X (xylene) below 40 and 15 g/m3h, respectively. As the influent carbon loadings of BA and X were increased up to 150 and 110 g/m3h, removal efficiencies higher than 80 % were achieved. Therefore, the trickle‐bed air biofilter (TBAB) appeared efficient in the control of emissions containing mixtures of butyl acetate and xylene with low to medium carbon loadings. The removal efficiencies of butyl acetate were higher than those of xylene, indicating that butyl acetate was the substrate preferred in the utilization of butyl acetate and xylene mixtures by the microorganisms. Carbon recoveries of 98–101 % were achieved, demonstrating the accuracy of results. The carbon mass rate of the liquid effluent was approximately two to three orders of magnitude less than that of the CO2 effluent, indicating that the dissolved VOCs and their derivatives in the leachate were present in a negligible amount in the reactor. Applicable operating conditions of the TBAB unit for treating BA and X mixtures were suggested.  相似文献   

2.
A mathematical model that incorporates mass transfer process and biofilm reactions is presented to predict the performance of a trickle-bed air biofilter (TBAB) for treating toluene (T) and acetone (ACE) mixtures. The model consists of a set of mass balance equations for T, ACE and oxygen in the bulk gas phase and within the biofilm. The gas phase T and ACE concentrations predicted by the model were in good agreement with the measured data available in a previous study. The important parameters were evaluated in the sensitivity analysis to determine their respective effects on the model performance. Four parameters were identified as strongly influencing the model performance, the surface area of the biofilm per unit volume of packing material (A S), the empty-bed residence time (EBRT), the maximum specific growth rate of microorganism ( m), and the microbial yield coefficient (Y). A practical application of the model to derive the performance equation of TBAB is also given.  相似文献   

3.
A mathematical model that incorporates mass transfer process and biofilm reactions is presented to predict the performance of a trickle-bed air biofilter (TBAB) for treating isopropyl alcohol (IPA) and acetone (ACE) mixtures. The model consists of a set of mass balance equations for IPA, ACE and oxygen in the bulk gas phase and within the biofilm. The effluent gas phase IPA and ACE concentrations predicted by the present model were in good agreement with the measured data available in a previous study. The important parameters were evaluated by sensitivity analysis to determine their respective effects on model performance. Four parameters were identified that strongly influenced model performance: surface area of the biofilm per unit volume of packing material (AS), empty-bed residence time (EBRT), maximum specific growth rate of microorganism (μm), and microbial yield coefficient (Y). Practical applications of the model to derive the performance equation of TBAB for treating different inlet IPA and ACE concentrations were also demonstrated.  相似文献   

4.
This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank.  相似文献   

5.
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day−1. During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW−1 h−1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW−1 h−1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW−1 h−1 at the same time (indicating 100% conversion of substrate carbon to CO2). All of these observations promised a new type of “dry” biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.  相似文献   

6.
A trickle‐bed air biofilter (TBAB) was evaluated under conditions of interchanging the feed volatile organic compounds (VOCs) in the sequence methyl ethyl ketone (MEK), toluene, methyl isobutyl ketone (MIBK), styrene, and then back to MEK. The obtained performance results revealed that the biofilter provided high removal efficiency within the critical loading of each VOC, which was previously defined in the non‐interchanging VOC fed biofilter. The biofilter easily acclimated to the oxygenated compounds (MEK and MIBK), but re‐acclimation was delayed for the aromatic compounds (toluene and styrene). Ratios of the molar mass of CO2 produced per molar mass of VOC removed were investigated. It has been found that the ratios for the aromatic compounds closely resembled the theoretical complete chemical oxidation based ratios while larger differences were encountered with the oxygenated compounds. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes was used to assess the impact of interchanging VOCs on the bacterial community structure in the biofilter. The results from denaturing gradient gel electrophoresis (DGGE) showed that the structure of the microbial community in the biofilter was different after each interchange of VOCs.  相似文献   

7.
The trickle-bed air biofilter (TBAB) performance for treating acrylonitrile (AN) and styrene (SR) mixtures was evaluated under different influent carbon loadings. In the pseudo steady state conditions, the elimination capacities of AN and SR increased but the removal efficiencies decreased with increased influent carbon loading. The removal efficiencies of AN were higher than those of SR, indicating that AN is a preferred substrate in the ANSR waste gas. More than 80% removal efficiencies were achieved with influent carbon loadings of AN and SR below 28 and 22 g/m(3)/h, respectively. The TBAB appears to be efficient for controlling ANSR emission with low to medium carbon loadings, and the effectiveness could be maintained over 175 days of laboratory operation. The elimination capacities of AN and SR for a pure volatile organic compound (VOC) feed were higher than those for a mixed VOC feed and the differences increased with increased influent VOC loading.  相似文献   

8.
All over the world, Microbial systems are used to clean soils, waters and air streams that have been contaminated with volatile organic compounds (VOC). Information about the structure and function of the microbes that metabolize these contaminants can be gained by studying these microbial systems. Here we describe the spatial patterns of respiratory activity in Pseudomonas putida 54G aerobic biofilms degrading two VOC, toluene and ethanol. Oxygen concentration profiles within the biofilm were measured using microsensors. These profiles are thought to be most accurate reflection of the structure and function of aerobic microbial biofilms. The degrading process certainly imposed a structural and functional patterns on the microbial biofilm community growing at the expense of the VOC substrate. Cryosectioning coupled with the staining of biofilm samples confirmed a high respiratory activity near the substratum, that decreased towards the biofilm/fluid interface. The accumulation of inactive cells in the outer biofilm layer protects the inner biofilm from high concentrations of toxic compounds and also limits the degradation rate. This stratification phenomenon appeared to be a general pattern for P. putida 54G biofilms degrading VOC. Received: 25 June 1998 / Accepted: 7 November 1998  相似文献   

9.
Laboratory-scale biofilm reactors were used to evaluate a model of the kinetics of steady-state biofilm and the concept that there is a minimum concentration, Smin, below which no steady-state activity can occur. With acetate as the ratelimiting substrate, the steady-state concept of Smin was verified for naturally grown biofilms. Substrate removal and biofilm thickness declined rapidly as the substrate concentration approached Smin, which was 0.66 mg/liter for acetate. Using independently derived kinetic parameters, the model of steady-state-biofilm kinetics successfully predicted substrate utilization and biofilm thickness without the need for fitting factors. The results imply that organic materials may persist in water and wastewater, in part, because they are too low in concentration to supply sufficient energy to sustain the microorganisms.  相似文献   

10.
Bed segregation in a fluidized bed bioreactor profoundly influenced biofilm thickness and microbial activities of the biofilm along the bed height. Bioparticles coated with a thin biofilm, observed at the bottom of the reactor, had a higher specific activity in propylene glycol and n-propanol degradation than in thick biofilms developed at the top of the reactor. Although no significant difference was observed in specific activity for propionate and acetate along the reactor flow axis, more total propionate and acetate conversion occurred in regions of thicker biofilm accumulation.  相似文献   

11.
Batch experiments with varying initial substrate concentrations and biomass volumes were performed in a three‐phase fluidized bed biofilm reactor treating simulated domestic wastewater to study the simultaneous carbon oxidation and nitrification in the biofilm process. A simplified mass balance equation for the biofilm was proposed and five different kinetic rate equations were used to match the actual data. The kinetic parameters were obtained by nonlinear regression analysis on a set of two differential equations representing the simultaneous carbon oxidation and nitrification. The competitive inhibition model incorporating the effects of total organic carbon (TOC) concentrations on nitrification rates was the best‐suited model based on the average r2. In this model, oxygen concentration and its affinity constants were not included. Instead, it was assumed that the rate of carbon oxidation is independent of the NH4+‐N, while nitrification is affected by TOC. The number of parameters was successfully minimized without reducing its ability to accurately predict the bulk concentration time course, which would reduce computational complexity and possibly enhance the availability for an actual wastewater treatment process.  相似文献   

12.
Partial hydrolysis of triacylglycerols of high-erucic-acid seed oils from white mustard (Sinapis alba), oriental mustard (Brassica juncea) and honesty (Lunaria annua), catalysed by lipases from Candida cylindracea and Geotrichum candidum, leads to enrichment of erucic acid and other very-long-chain mono-unsaturated fatty acids (VLCMFA) in the acylglycerols (mono-, di- and triacylglycerol) while the C18 fatty acids (oleic, linoleic and linolenic) are enriched in the fatty acid fraction. Partial hydrolysis of the high-erucic-acid triacylglycerols, catalysed by lipases from porcine pancreas, Chromobacterium viscosum, Rhizopus arrhizus and Rhizomucor miehei yields fatty acids with substantially higher levels of VLCMFA, as compared to the starting material, while the C18 fatty acids are enriched in the acylglycerol fraction. Lipases from Penicillium sp. and Candida antarctica are ineffective for the fractionation of either group of fatty acids. Transesterification of the high-erucic-acid triacylglycerols with ethyl, propyl or butyl acetate or with n-butanol, catalysed by the lipase from R. miehei, leads to enrichment of VLCMFA in the alkyl (ethyl, propyl or butyl) esters, whereas the C18 fatty acids are enriched in the acetylacylglycerols and acylglycerols.  相似文献   

13.
Volatile organic compounds, namely, toluene, trichloroethylene, styrene, etc., disposed off by electronics and polymer industries, are very harmful. The treatment of VOC laden air through biochemical route is one of the potential options for reduction of their concentration in parts per million or parts per billion level. Under the present investigation, a 0.05-m diameter and 0.58-m high trickle bed biofilter has been studied for the removal of VOCs namely toluene and trichloroethylene from a simulated air–VOC mixture using pure strain of Pseudomonas putida (NCIM2650) in immobilized form. Inlet concentrations of VOCs have been varied in two ranges, the lower being 0.20–2.00 g/m3 and higher being 10–20 g/m3, respectively. The Monod type rate kinetics of removal of VOCs has been determined. A three-phase deterministic mathematical model has been developed taking the simultaneous reaction kinetics and interphase (gas to liquid to biofilm) mass transfer rate of VOCs into consideration. Experimentally determined kinetic parameters and mass transfer coefficients calculated using standard correlations have been used. Concentrations have been simulated for all the three phases. Simulated results based on the model have been compared with the experimental ones for both gas and liquid phases satisfactorily. The mathematical model validated through the successful comparison with experimental data may be utilized for the prediction of performance of biofilters undergoing removal of different VOCs in any further investigation and may be utilized for the scale-up of the system to industrial scale.  相似文献   

14.
The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm was investigated by microsensor analysis, fluorescence in situ hybridization, quantitative PCR, and batch incubation activity measurements. In situ aerobic activity showed a significant decrease through the filter, while the distribution of ammonia-oxidizing bacteria (AOB) was highly skewed toward the filter outlet. Nitrite oxidation was not detected during most of the experimental period, and the AOB activity therefore resulted in NO2, accumulation, with concentrations often exceeding 100 mM at the filter inlet. The restriction of AOB to the outlet section of the filter was explained by both competition with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow.Emissions of NH3, odorous organic gasses, and dust from pig facilities cause significant problems for neighbors and the surrounding natural environment. In Denmark, swine production accounts for 34% of the total atmospheric NH3 emission, of which 50% originates from pig house emissions (19). Furthermore, multiple volatile and very odorous organic compounds are emitted with animal house exhaust air and constitute a severe nuisance in residential areas (16, 31). While biofilters based on wood chips, compost, and peat have proven efficient in removing complex mixtures of volatile organic compounds (VOC) from piggery exhaust air, biotrickling filters have been shown to be efficient in both odor and NH3 removal (30). In these filters, airborne VOC and NH3 are taken up by an irrigated biofilm and oxidized by organoheterotrophic and nitrifying bacteria, respectively, resulting in the production of CO2, NO2 or NO3, and microbial biomass (43). The nitrification process, which comprises the two-step oxidation of NH3 via NO2 to NO3, is catalyzed by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea and by nitrite-oxidizing bacteria (NOB), respectively (22, 23). However, in many biotrickling filters, NOB activity seems to be absent, resulting in NO2 being the end product of nitrification (29).Waste products often accumulate in biotrickling filters, as the water is recycled many times to minimize wastewater discharge. In particular, NO2 may accumulate to concentrations above 100 mM (29), resulting in high levels of free nitrous acid (FNA, or HNO2), which is inhibitory to many microorganisms (2, 40, 50). As a result of an overall countercurrent air-water flow, FNA, VOC, and NH3 concentrations are expected to decrease from the filter air inlet toward the outlet, potentially promoting a gradient of microbial processes and species distribution through the filter.Also, on a smaller scale, physical and chemical heterogeneity results in microgradients of substrates and O2 within the biofilm that may affect the spatial distribution and rate of microbial processes. While considerable research effort has been given to the physicochemical aspects of filter optimization (11, 44), very little is known about the distribution, activity, and potential interactions of bacterial processes in the biofilm. Problems frequently arise, such as highly variable odor reduction, failed NH3 removal, and filter clogging due to excess biofilm growth and slime excretion. Improved insight into the dynamics of the microbial activities may help control the biological processes in order to optimize and stabilize filter performance.In this study, the in situ activity and distribution of organoheterotrophic bacteria and AOB and the identity and NH3 oxidation potential of the AOB were investigated in a two-section, full-scale biological air filter treating waste gas from a pig facility. Biofilms in different filter sections along a gradient of decreasing VOC and NH3 load and NO2 accumulation were characterized. The goal was to attain a basic understanding of the microbial processes and thus filter function.  相似文献   

15.
Lignocellulose pretreatment produces various toxic inhibitors that affect microbial growth, metabolism, and fermentation. Zymomonas mobilis is an ethanologenic microbe that has been demonstrated to have potential to be used in lignocellulose biorefineries for bioethanol production. Z. mobilis biofilm has previously exhibited high potential to enhance ethanol production by presenting a higher viable cell number and higher metabolic activity than planktonic cells or free cells when exposed to lignocellulosic hydrolysate containing toxic inhibitors. However, there has not yet been a systematic study on the tolerance level of Z. mobilis biofilm compared to planktonic cells against model toxic inhibitors derived from lignocellulosic material. We took the first insight into the concentration of toxic compound (formic acid, acetic acid, furfural, and 5‐HMF) required to reduce the metabolic activity of Z. mobilis biofilm and planktonic cells by 25% (IC25), 50% (IC50), 75% (IC75), and 100% (IC100). Z. mobilis strains ZM4 and TISTR 551 biofilm were two‐ to three fold more resistant to model toxic inhibitors than planktonic cells. Synergetic effects were found in the presence of formic acid, acetic acid, furfural, and 5‐HMF. The IC25 of Z. mobilis ZM4 biofilm and TISTR 551 biofilm were 57 mm formic acid, 155 mm acetic acid, 37.5 mm furfural and 6.4 mm 5‐HMF, and 225 mm formic acid, 291 mm acetic acid, 51 mm furfural and 41 mm 5‐HMF, respectively. There was no significant difference found between proteomic analysis of the stress response to toxic inhibitors of Z. mobilis biofilm and planktonic cells on ZM4. However, TISTR 551 biofilms exhibited two proteins (molecular chaperone DnaK and 50S ribosomal protein L2) that were up‐regulated in the presence of toxic inhibitors. TISTR 551 planktonic cells possessed two types of protein in the group of 30S ribosomal proteins and motility proteins that were up‐regulated.  相似文献   

16.
The biodegradation of toluene was studied in two lab-scale air biofilters operated in parallel, packed respectively with perlite granules (PEG) and polyurethane foam cubes (PUC) and inoculated with the same toluene-degrading fungus. Differences on the material pore size, from micrometres in PEG to millimetres in PUC, were responsible for distinct biomass growth patterns. A compact biofilm was formed around PEG, being the interstitial spaces progressively filled with biomass. Microbial growth concentrated at the core of PUC and the excess of biomass was washed-off, remaining the gas pressure drop comparatively low. Air dispersion in the bed was characterised by tracer studies and modelled as a series of completely stirred tanks (CSTR). The obtained number of CSTR (n) in the PEG packing increased from 33 to 86 along with the applied gas flow (equivalent to empty bed retention times from 48 to 12 s) and with operation time (up to 6 months). In the PUC bed, n varied between 9 and 13, indicating that a stronger and steadier gas dispersion was achieved. Michaelis–Menten half saturation constant (k m) estimates ranged 71–113 mg m−3, depending on the experimental conditions, but such differences were not significant at a 95% confidence interval. The maximum volumetric elimination rate (r m) varied from 23 to 50 g m−3 h−1. Comparison between volumetric and biomass specific biodegradation activities indicated that toluene mass transfer was slower with PEG than with PUC as a consequence of a smaller biofilm surface and to the presence of larger zones of stagnant air.  相似文献   

17.
A novel method for the determination of microbial growth kinetics on hydrophobic volatile organic compounds (VOC) has been developed. A stirred tank reactor was operated as a fed-batch system to which the VOC was continuously fed via the gas phase, assuring a constant VOC concentration in the mineral medium. A flow of air was saturated with the VOC, and then mixed with a further flow of air, to obtain a predetermined VOC concentration. Thus, different VOC concentrations in the mineral medium could be obtained by altering the VOC concentration in the feed gas. The growth kinetics of Xanthobacter autotrophicus GJ10 on 1,2-dichloroethane (DCE) and of Pseudomonas sp. strain JS150 on MonoChloroBenzene (MCB) were assessed using this method. The growth of strain JS150 was strongly inhibited at MCB concentrations higher than 160 mg l−1, and the results were fitted using a piecewise function. The growth kinetics of strain GJ10 were described by the Luong model where maximum growth rate μmax = 0.12 h−1, substrate saturation constant K S = 7.8 mg l−1, and maximum substrate concentration S m (above which growth is completely inhibited) = 1080 mg l−1. Varying nitrogen and oxygen flows enabled the effect of oxygen concentration on the growth kinetics of Pseudomonas JS150 to be determined. Received: 30 November 1998 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

18.
The distribution of volatile organic compounds (VOC) in urban-influenced air and river waters was investigated. The aquatic VOC were extracted with the closed-loop stripping technique (CLST) and the airborne compounds were studied using two methods, charcoal and polyurethane foam adsorption. In both types of samples, C1–C5 alkylbenzenes and n-alkanes constitute the two major VOC groups, and the presence of these groups indicates a predominance of petroleum products in these two environmental compartments. Chlorinated compounds such as polychlorobenzenes, polychloronaphthalenes and hexachlorobutadiene are abundant in water samples, whereas tetrachloroethene is the predominant chlorinated airborne VOC. The compounds collected with each sampling system can be described in terms of ranges of volatility. These ranges (expressed as mmHg vapour pressure at 25°C) can be defined approximately as 140 (methylcyclopentane)—0.65 (n-undecane) for charcoal, 5.1 (n-nonane)—0.000061 (n-docosane) for polyurethane foam and 29 (toluene)—0.00029 (n-eicosane) for the CLST. Parallel air sampling with charcoal and polyurethane foam is therefore needed to cover a VOC range similar to that afforded by the CLST in water.  相似文献   

19.
A two-phase and three-phase predictive fluidization model based on the characteristics of a system such as media type and size, flow rates, and reactor cross sectional area was proposed to calculate bed expansion, solid, liquid and gas hold up and specific surface area (SSA) of the biofilm particles. The model was subsequently linked to 1d AQUIFAS APP software (Aquaregen) to model biological nutrient removal in two phase (anoxic) and three phase (aerobic) fluidized bed bioreactors. The credibility of the proposed model for biological nutrient removal was investigated using the experimental data from a Twin Circulating Fluidized Bed Bioreactors (TCFBBR) treating synthetic and municipal wastewater.The SSA of bio-particles and volume of the expanded bed were simulated as a function of operational parameters. Two-sided t-tests demonstrated that simulated SCOD, NH4-N, NO3-N, TN, VSS and biomass yields agreed with the experimental values at the 95% confidence level.  相似文献   

20.
Abstract

The ability of dried bacterial strain Bacillus sp. S14 to adsorb Malathion in a packed bed column reactor was studied. The effects of important design parameters such as bed height, flow rate and influent Malathion concentration on Malathion removal from an aqueous solution was studied using a packed bed column reactor. The optimised conditions for maximum Malathion removal were found to be: flow rate: 5 mL min-1, bed height: 6.0 cm and influent Malathion concentration: 25 mg L-1. The Adams-Bohart model, Wolborska model, Thomas model, Yoon and Nelson Model were employed to determine characteristic parameters such as N0 (saturation concentration, mg L-1), βo (external mass transfer coefficient, min-1), k Th(Thomas rate constant, mL min-1mg-1), q0 (maximum solid phase concentration of the solute, mg L-1), kYN (rate constant, min-1) and τ (time required for 50 % adsorbate breakthrough time, min) which are useful for process design. Data were fitted with Adams-Bohart model at lower region of (C/C0) values but more accurately fitted with Wolborska and Thomas model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号