首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire.  相似文献   

2.
Two major pathways, the T cell receptor and the T11 alternate pathway, allow for T cell activation. In the human thymus, the T cell antigen receptor complex is reduced or absent on immature thymocytes, whereas the T11 glycoprotein is present at high cell surface density on all thymocytes. To determine whether activation through the T11 pathway induces similar or different changes in mature and immature thymocytes, we fractionated thymocytes according to their surface expression of the T3-T cell receptor (T3/Ti) complex. We report that two populations, one with high and one with low T3/Ti expression, can be activated through the T11 pathway to undergo nuclear activation and express IL 2 receptors. Moreover, in the absence of accessory cells, only the most mature population, expressing high T3 density, could be induced to proliferate, whereas the subset representing immature cortical thymocytes required accessory cells for proliferation. These findings suggest that the cellular microenvironment may have a critical role in regulating the activation of immature cortical thymocytes and that this cell population may not represent "nonfunctional" dead end cells, but rather a valid intermediate in human thymic differentiation.  相似文献   

3.
An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.  相似文献   

4.
CD28 signals in the immature immunological synapse   总被引:3,自引:0,他引:3  
T cell recognition of peptide-MHC complexes on APCs results in the aggregation of TCRs at a central supramolecular activation complex (c-SMAC) within a mature immunological synapse. T cells require a second "costimulatory" signal for activation, the most important of which, for naive T cells, is from CD28. However the time at which CD28-derived signals are induced relative to c-SMAC formation is not well understood. In this study, we have assessed the kinetics of CD28 localization and function relative to well-established aspects of c-SMAC formation. CD28 accumulates at the immature synapse alongside the TCR and is likewise enriched at the synapse at the onset of the calcium signal. In addition, using CD28 deficient or reconstituted murine cells in a single-cell recording approach shows that CD28 regulates this signal within seconds of a TCR-mediated rise in intracellular calcium levels. Finally, CD28 exerts effects on both the initiation and stabilization of the synapse in parallel with its effects on the downstream proliferation of T cells. Together, the data show that CD28 functions in the immunological synapse before the formation of the c-SMAC.  相似文献   

5.
The present view is that the antigen-presenting cell (APC) processes and presents simultaneously on its surface several different antigens that are displayed randomly (with respect to their being Self or Nonself) as peptide-MHC complexes. The naive T-cell interacting with its ligand on the APC is activated by "co-stimulation," the first step on the pathway to effectors. This view ignores the requirement for associative recognition of antigen (ARA) in mediating both the Self-Nonself discrimination and the regulation of effector class. The introduction of ARA as a requirement for these two decision functions highlights a critical role for the effector T-helper (eTh) and necessitates rethinking the contribution of the APC.  相似文献   

6.
Activation of naive CD8 T cells in vivo requires the recognition of cognate peptide-MHC complexes on APCs. Depending upon the activation status of the APC, such recognition will promote either a vigorous immune response or T cell tolerance and deletion. Recent studies suggest that the initial signals provided by APCs are sufficient to program the proliferation of naive CD8 T cells and their differentiation into effector cells. In this study, we sought to determine whether an initial encounter with tolerogenic APCs was sufficient to program deletion of naive CD8 T cells. Surprisingly, we find that regardless of whether naive CD8 T cells were stimulated by activated or quiescent APCs, transfer of the activated T cells into an Ag-free host was sufficient to ensure survival. Thus, although the extent of clonal expansion and development of effector function is determined by the activation status of the stimulatory APC, peripheral clonal deletion requires persistent Ag and is not determined by the initial stimulatory event.  相似文献   

7.
T cells are sensitive to small numbers of antigenic peptide-MHC ligands that are distributed among an excess of endogenous peptide-MHC complexes on the surface of antigen-presenting cells. Although there are accumulating data that indicate a role for these endogenous peptide-MHC complexes in T-cell receptor triggering, whether they are necessary, and the nature of their function, is controversial. In this Opinion article, I argue that endogenous peptide-MHC complexes are required for T-cell stimulation and that their mechanism of action differs between CD4(+) and CD8(+) T cells.  相似文献   

8.
Activation of CD4(+) Th cells requires their cognate interaction with APCs bearing specific relevant MHC class II-peptide complexes. This cognate interaction culminates in the formation of an immunological synapse that contains the various proteins and lipids required for efficient T cell activation. We now show that APC lipid raft membrane microdomains contain specific class II-peptide complexes and serve as platforms that deliver these raft-associated class II molecules to the immunological synapse. APC rafts are required for T cell:APC conjugate formation and T cell activation at low densities of relevant class II-peptide complexes, a requirement that can be overcome at high class II-peptide density. Analysis of confocal microscopy images revealed that over time APC lipid rafts, raft-associated relevant class II-peptide complexes, and even immunologically irrelevant class II molecules accumulate at the immunological synapse. As the immunological synapse matures, relevant class II-peptide complexes are sorted to a central region of the interface, while irrelevant class II molecules are excluded from this site. We propose that T cell activation is facilitated by recruitment of MHC class II-peptide complexes to the immunological synapse by virtue of their constitutive association with lipid raft microdomains.  相似文献   

9.
Fast dissociation rate of peptide-MHC complexes from TCR has commonly been accepted to cause T cell anergy. In this study, we present evidence that peptides that form transient complexes with HLA-DR1 induce anergy in T cell clones in vitro and specific memory T cells in vivo. We demonstrate that similar to the low densities of long-lived agonist peptide-MHC, short-lived peptide-MHC ligands induce anergy by engagement of approximately 1000 TCR and activation of a similar pattern of intracellular signaling events. These data strongly suggest that short-lived peptides induce anergy by presentation of low densities of peptide-MHC complexes. Moreover, they suggest that the traditional antagonist peptides might also trigger anergy by a similar molecular mechanism. The use of short-lived peptides to induce T cells anergy is a potential strategy for the prevention or treatment of autoimmune diseases.  相似文献   

10.
Negative selection of T cells occurs throughout thymic development.   总被引:2,自引:0,他引:2  
Thymic positive and negative selections govern the development of a self-MHC-reactive, yet self-tolerant, T cell repertoire. Whether these processes occur independently or sequentially remains controversial. To investigate these issues, we have employed tetrameric peptide-MHC complexes to fluorescently label and monitor polyclonal populations of thymocytes that are specific for moth cytochrome c (MCC)/I-Ek. In TCR beta mice tetramer-positive thymocytes are detectable even in the most immature TCR-expressing cells. In the presence of MCC peptide, thymocytes that bind strongly to MCC/I-Ek tetramers are deleted earlier in development and more extensively than cells that bind weakly. This negative selection of the MCC/I-Ek-specific cells occurs continuously throughout development and before any evidence of positive selection. Thus, positive and negative selections are independent processes that need not occur sequentially.  相似文献   

11.
12.
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which monitors kinetochore attachment to the mitotic spindle. Unattached kinetochores generate mitotic checkpoint proteins complexes (MCCs) that bind and inhibit the anaphase-promoting complex, or cyclosome (APC/C). How the SAC proficiently inhibits the APC/C but still allows its rapid activation when the last kinetochore attaches to the spindle is important for the understanding of how cells maintain genomic stability. We show that the APC/C subunit APC15 is required for the turnover of the APC/C co-activator CDC20 and release of MCCs during SAC signalling but not for APC/C activity per se. In the absence of APC15, MCCs and ubiquitylated CDC20 remain 'locked' onto the APC/C, which prevents the ubiquitylation and degradation of cyclin B1 when the SAC is satisfied. We conclude that APC15 mediates the constant turnover of CDC20 and MCCs on the APC/C to allow the SAC to respond to the attachment state of kinetochores.  相似文献   

13.
The majority of CD4+8- thymocytes are functionally immature.   总被引:5,自引:0,他引:5  
The thymus is the major site of T cell development and repertoire selection. During these processes, T cells segregate into two subsets that express either CD4 or CD8 accessory molecules, the phenotype of peripheral T cells. Analysis of CD4+8- thymocytes revealed that the majority of these cells express the heat-stable Ag (HSA) but not the nonclassical class I Ag, Qa-2. This HSA+, Qa-2- phenotype is similar to that of the less mature, CD4+8+ thymocytes. The remaining CD4+8- thymocytes possess the HSA-, Qa-2+ phenotype of peripheral T cells. To determine whether the Qa-2-, CD4+8- thymic subset is fully mature, we have analyzed the functional status of these CD4+8- subpopulations. The results indicate that only those thymocytes which express Qa-2 are fully responsive to anti-TCR stimulation in a manner analogous to peripheral T cells. The Qa-2- subset is nonresponsive to stimulation by anti-TCR antibodies that have been immobilized to plastic, even in the presence of lymphokines or syngeneic APC. This subset is, however, capable of proliferating to allogeneic cells or to anti-TCR on the surface of syngeneic APC, although not to the levels achieved by Qa-2+ thymocytes. Thus, the Qa-2- subset appears to require additional interactions which are not necessary for peripheral T cells or Qa-2+ thymocytes. Relevant to this issue, the Qa-2+ thymocyte subset does not appear until relatively late in development, and does not reach adult frequencies until several weeks after birth. These results would suggest that there is a progression from HSA+, Qa-2- to HSA-, Qa-2+ which parallels the maturation of functional responsiveness. These findings are important to understanding T cell selection since thymocytes with such a decreased responsiveness may have a differential capacity for tolerance induction. The results presented suggest that the bulk of CD4+8- thymocytes are not fully mature and that Qa-2 may serve as a marker for T cells with a more complete functional competence.  相似文献   

14.
Dendritic cells (DC) actively rearrange their actin cytoskeleton to participate in formation of the immunological synapse (IS). In this study, we evaluated the requirements for DC participation in the IS. DC rearrange their actin cytoskeleton toward naive CD4(+) T cells only in the presence of specific MHC-peptide complexes. In contrast, naive CD4(+) T cells polarized their cytoskeletal proteins in the absence of Ag. DC cytoskeletal rearrangement occurred at the same threshold of peptide-MHC complexes as that required for T cell activation. Furthermore, T cell activation was inhibited by specific blockade of DC cytoskeletal rearrangement. When TCR-MHC interaction was bypassed by using Con A-activated T cells, DC polarization was abrogated. In addition, directional ligation of MHC class II resulted in DC cytoskeletal polarization. Our findings suggest that a high Ag specificity is required for DC IS formation and that MHC class II signaling plays a central role in this process.  相似文献   

15.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

16.
Summary Thymic nurse cell complexes (TNC-c), isolated from mouse thymuses at 1 and 2 h after i.v. injection of 6-(3H)thymidine, were analyzed in autoradiographs of semithin serial sections with regard to their size and the distribution of labeled thymocytes in individual types of complexes. The total number of thymocytes per complex reflects the type of complex. In a parallel study, localization of labeled thymocytes within individual zones of thymic cortex was examined. Thymocyte division within complexes may yield sequential complex generations differing in number per complex. However, thymocytes within complexes differ from each other in division kinetics. Half of the thymocytes that had been labeled 1 h after injection divided within 2 h. The rapidly dividing fraction of thymocytes were distributed within small complexes containing 2–8 cells and corresponded to the distribution of labeled cells in the outer thymic cortex. The proportion of labeled cells within large complexes resembled the distribution of labeled cells in the deep cortex. The data support the view that microenvironmental factors within TNC-c are responsible for both inducing thymocytes to enter the cell cycle and the negative selection (cell death) of some thymocytes.  相似文献   

17.

Background

Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL''s are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL''s. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers.

Methodology/Principal Findings

We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps.

Conclusions/Significance

We have developed an efficient “one-pot, mix-and-read” strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.  相似文献   

18.
TCR interaction with peptide-MHC complexes triggers migration of protein kinases, actin-binding proteins, and other accessory molecules to the T cell/APC synapse. We used confocal immunofluorescence methods to show that the adapter protein LAT (linker for activation of T cells) and the guanine nucleotide exchange factor Vav also move to the APC interface in mouse CD4 T cells conjugated to anti-CD3 hybridoma cells, and in TCR-transgenic CD4 cells conjugated to APC bearing agonist (but not closely related nonagonist) peptides. The proportion of CD4+ T cells able to relocalize LAT or Vav, or to relocate cytoplasmic NT-AT (NF-ATc) from cytoplasm to nucleus, declines about 2-fold in aged mice. The decline in LAT relocalization is accompanied by a similar decline in tyrosine phosphorylation of LAT in CD4 cells stimulated by CD3/CD4 cross-linking. Two-color experiments show that LAT redistribution is strongly associated with relocalization of both NF-ATc and protein kinase C-theta among individual cells. LAT migration to the immunological synapse depends on actin polymerization as well as on activity of Src family kinases, but aging leads to only a small change in the percentage of CD4 cells that redistribute F-actin to the site of APC contact. These results suggest that defects in the ability of T cells from aged donors to move kinase substrates and coupling factors, including LAT and Vav, into the T cell/APC contact region may contribute to the decline with age in NF-ATc-dependent gene expression, and thus to defects in T cell clonal expansion.  相似文献   

19.
An efficient adaptive immune response should prevent pathogen infections and tumor growth without causing significant damage to host constituents. A crucial event determining the balance between tolerance and immunity is antigen recognition by T cells on the surface of antigen presenting cells (APC). Several molecular contacts at the interface between T cells and APCs contribute to define the nature of the adaptive immune response against a particular antigen. Upon TCR engagement by a peptide-MHC complex (pMHC) on the surface of an APC, a specialized supra-molecular structure known as immunological synapse (IS) assembles at the interface between these two cells. This structure involves massive re-distribution of membrane proteins, including TCR and pMHC complexes, as well as co-stimulatory and adhesion molecules. Furthermore, IS assembly leads to several important intracellular events necessary for T cell activation, such as recruitment of signaling molecules and cytoskeleton rearrangements. Because IS assembly leads to major consequences on the function of T cells, several studies have attempted to identify both soluble and membrane-bound molecules that could contribute to modulate the IS function. Here we describe recent literature on the regulation of IS assembly and modulation by TCR/pMHC binding kinetics, chemokines and cytokines focusing on their role at controlling the balance between adaptive immunity and tolerance.  相似文献   

20.
T cell activation is driven by the TCR and complemented by costimulation. We have studied the dynamics of ligand-engagement of the costimulatory receptor CD2 in T cell/APC couples. Thousands of ligand-engaged CD2 molecules were included in a large T cell invagination at the center of the cellular interface within 1 min of cell couple formation. The structure and regulation of this invagination shared numerous features with phagocytosis and macropinocytosis. Three observations further characterize the invagination and the inclusion of CD2: 1) numerous ligand-engaged receptors were enriched in and internalized through the T cell invagination, none as prominently as CD2; 2) dissolution of the T cell invagination and CD2 engagement were required for effective proximal T cell signaling; and 3) the T cell invagination was uniquely sensitive to the affinity of the TCR for peptide-MHC. Based on this characterization, we speculate that the T cell invagination, aided by CD2 enrichment, internalizes parts of the TCR signaling machinery to reset T cell signaling upon agonist-mediated, stable APC contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号