首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

2.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

3.
The partitioning between peroxisomal and mitochondrial beta-oxidation of [1-14C]eicosapentaenoic acid (20:5(n-3] and [1-14C]arachidonic acid (20:4(n-6)) was studied. In hepatocytes from fasted rats approximately 70% of the fatty acid substrate was oxidized with oleic, linoleic, eicosapentaenoic and docosahexaenoic (22:6(n-3)) acid, even more with adrenic (22:4(n-6)) and less with arachidonic acid. When the mitochondrial oxidation was suppressed by fructose refeeding and by (+)-decanoylcarnitine, the fatty acid oxidation in per cent of that in cells from fasted rats was with 18:1(n-9) 7%, 18:2(n-6) 8%, 20:4(n-6) 12%, 20:5(n-3) 20%, 22:4(n-6) 57% and for 22:6(n-3) 29%. The fraction of 14C recovered in palmitate and other newly synthesized fatty acids after fructose refeeding decreased in the order 22:4(n-6) greater than 22:6(n-3) greater than 20:5(n-3) greater than 20:4(n-6) and was very small with 18:1(n-9) and 18:2(n-6). In cells from both fed and fructose-refed animals 20:5(n-3) was efficiently elongated to 22:5(n-3) and 22:6(n-3). 20:5(n-3) and 20:4(n-6) were not elongated after fasting. The phospholipid incorporation with [1-14C]20:5(n-3) decreased during prolonged incubations while it remained stable with [1-14C]arachidonic acid. The results suggest that peroxisomes contribute more to the oxidation of 20:5(n-3) than with 20:4(n-6) although both substrates are probably oxidized mainly in the mitochondria.  相似文献   

4.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

5.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

6.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

7.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

8.
Changes in the hepatic concentration of n-3 fatty acids, e.g., eicosapentaenoic acid and linolenic acid, were significantly reduced by their simultaneous administration with sesamin, whereas there was no such effect of sesamin for n-6 and n-9 fatty acids. However, there was no significant difference in lymphatic absorption between eicosapentaenoic acid (n-3) and arachidonic acid (n-6), irrespective of the presence or absence of sesamin.  相似文献   

9.
Investigated were the changes in fatty acid composition, oxidation and enzymatic deterioration of lipids in frozen (−30°C) fish fillets from the Persian Gulf. The narrow barred Spanish mackerel ( Scomberomorus commersoni ) and white cheek shark ( Carcharhinus dussumieri ) were tested with storage times of 0, 1, 2, 3, 4, 5 and 6 months at −18°C. Statistical results showed that the major fatty acids among the saturated and monounsaturated fatty acids of each fish species were palmitic (C16:0) and oleic (C18:1n-9) acids, respectively. Both linoleic acid (C18:2n-6) and arachidonic acid (AA) (C20:4n-6) were predominant in total n-6 polyunsaturated fatty acids in both mackerel and shark. The EPA (eicosapentaenoic acid; C20:5 n-3) and DHA (docosahexaenoic acid; C22:6 n-3) acids were the major fatty acids among total n-3 acids in both fishes. During frozen storage, the PUFA (40.1 and 23.94%), n-3 (48 and 42.83%), ω 3/ ω 6 (41.36 and 50%), PUFA/SFA (56 and 42.23%) and EPA + DHA/C16 (55.55 and 46.66%) contents decreased in S. commersoni and C. dussumieri , respectively. Also peroxide, thiobarbituric acid (TBA) and free fatty acid (FFA) values significantly increased (P < 0.01) with the time of storage.  相似文献   

10.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

11.
The biologic effect of eicosanoids depends in large measure upon the relative masses in tissues of eicosanoids derived from the n-6 fatty acids, dihomogammalinolenic acid and arachidonic acid, and the n-3 fatty acid, eicosapentaenoic acid. Generation of this tissue balance is related to the relative cellular masses of these precursor fatty acids, the competition between them for entry into and release from cellular phospholipids, and their competition for the enzymes that catalyze their conversion to eicosanoids. In order to better understand these processes, we studied the cellular interactions of n-6 and n-3 fatty acids using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Unlike studies using cells with endogenous pools of n-6 and n-3 fatty acids, the use of EFD-1 cells enabled us to examine the metabolic fate of each family of fatty acids both in the presence and in the absence of the second family of fatty acids. Thus, the specific effects of one fatty acid family on the other could be directly assessed. In addition, we were able to replete the cells with dihomogammalinolenic acid (DHLA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) of known specific activities; thus the masses of cellular DHLA, AA, and EPA, and their metabolites, PGE1, PGE2, and PGE3, respectively, could be accurately quantitated. The major findings of this study were: 1) n-6 fatty acids markedly stimulated the elongation of EPA to 22:5 whereas n-3 fatty acids inhibited the delta 5 desaturation of DHLA to AA and the elongation of AA to 22:4; 2) n-6 fatty acids caused a specific redistribution of cellular EPA from phospholipid to triacylglycerol; 3) n-3 fatty acids reduced the mass of DHLA and AA only in phosphatidylinositol whereas n-6 fatty acids reduced the mass of EPA to a similar extent in all cellular phospholipids; and 4) n-3 fatty acids caused an identical (33%) reduction in the bradykinin-induced release of PGE1 and PGE2, whereas n-6 fatty acids stimulated PGE3 release 2.3-fold. Together, these highly quantitative metabolic data increase our understanding of the regulation of both the cellular levels of DHLA, AA, and EPA, and their availability for eicosanoid synthesis. In addition, these findings provide a context for the effective use of these fatty acids in dietary therapies directed at modulation of eicosanoid production.  相似文献   

12.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

13.
Docosahexaenoic acid (22:6n-3) is highly enriched in the retina. To determine if retinal cells take up and metabolize fatty acids in a specific manner, retinas from Rana pipiens were incubated for 3 h with an equimolar mixture of tritiated 22:6n-3, arachidonic acid (20:4n-6), palmitic acid, and oleic acid. The radiolabeling of retinal lipids was determined and compared to the endogenous fatty acid content of the lipids. The results showed that in most, but not all, cases, the relative labeling with the four precursor fatty acids was similar to their relative abundance in each glycerolipid. Thus, during retinal glycerolipid synthesis, either through de novo or acyl exchange reactions, fatty acids are incorporated in proportions reflecting their steady-state mass levels. Since other studies with labeled glycerol have shown greater differences between early labeling patterns and molecular species mass, the final incorporation we report may be due primarily to acyl exchange reactions.  相似文献   

14.
The synthesis of phospholipids in mammalian cells is regulated by the availability of three critical precursor pools: those of choline, cytidine triphosphate and diacylglycerol. Diacylglycerols containing polyunsaturated fatty acids (PUFAs) apparently are preferentially utilized for phosphatide synthesis. PUFAs are known to play an important role in the development and function of mammalian brains. We therefore studied the effects of unsaturated, monounsaturated and polyunsaturated fatty acids on the overall rates of phospholipid biosynthesis in PC12 rat pheochromocytoma cells. Docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (AA, 20:4n-6) all significantly stimulated the incorporation of (14)C-choline into total cellular phospholipids. In contrast, monounsaturated oleic acid (OA) and the saturated palmitic (PA) and stearic (SA) acids did not have this effect. The action of DHA was concentration-dependent between 5 and 50 microM; it became statistically significant by 3 h after DHA treatment and then increased over the ensuing 3 h. DHA was preferentially incorporated into phosphatidylethanolamine (PE) and phosphatidylserine (PS), while AA predominated in phosphatidylcholine (PC).  相似文献   

15.
Several mechanisms have been proposed to explain the anti-arrhythmic effects of n-3 polyunsaturated fatty acids. One mechanism is the effect of modifying cell membrane phospholipid and their subsequent effect on intracellular cell signaling via the second messengers, Ins(1,4,5)P(3) and diacylglycerol. Isolated cardiac myocytes from adult pig hearts were used to investigate the effect of n-3 polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, on the inositol phosphate metabolism and protein kinase C activity. Adult porcine cardiac myocytes were grown in media supplemented with 400 μM arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid. After 24 hr, fatty acid analyses of total lipids by TLC in supplemented cells showed that eicosapentaenoic acid and docosahexaenoic acid were selectively incorporated into the phosphatidylinositol fraction. In the diacylglycerol fraction, there was a small incorporation of both eicosapentaenoic acid and docosahexaenoic acid but it was not significantly different from that of controls. To study the effect of membrane phospholipid modification on the phospholipase C mediated inositol lipid cycle, cardiac myocytes were labeled with 4μCi/ml myo-[2-(3)H]Ins for 48 hr. After stimulation with epinephrine and phenylephrine (alpha-receptor agonist) the water soluble [(3)H]Ins products were separated by chromatography on Dowex AG 1-X8 and measured by scintillation counting. After stimulation, the levels of [(3)H]Ins(1,4,5)P(3) and [(3)H]Ins(1,3,4,5)P(4) in eicosapentaenoic acid and docosahexaenoic acid supplemented myocytes were significantly reduced (P < 0.05) compared to arachidonic acid supplemented myocytes. Similarly, eicosapentaenoic acid and docosahexaenoic acid supplemented cells had reduced levels of protein kinase C activity after stimulation compared to arachidonic acid supplemented cells. From these experiments, it is evident that n-3 PUFA supplementation modulates intracellular cell signaling suggesting a possible anti-arrhythmic mechanism.  相似文献   

16.

Background  

Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (ARA, C20:4n-6), collectively known as the highly unsaturated fatty acids (HUFA), play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio) display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6) and linolenic acid (LNA, C18:3n-3). As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6) and elongase (elovl5), involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed.  相似文献   

17.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

18.
Stereospecifically (3)H-labeled substrates are useful tools in studying the mechanism of hydrogen abstractions involved in the oxygenation of polyunsaturated fatty acids. Here, we describe modified methods for the synthesis of arachidonic acids labeled with a single chiral tritium on the methylene groups at carbons 10 or 13. The appropriate starting material is a ketooctadecanoic acid which is prepared from an unsaturated C18 fatty acid precursor or by total synthesis. The (3)H label is introduced by NaB(3)H(4) reduction and the resulting tritiated hydroxy fatty acid then is tosylated, separated into the enantiomers by chiral phase HPLC, and subsequently transformed into stearic acids. A variety of stereospecifically labeled unsaturated fatty acids are obtained using literature methods of microbial transformation with the fungus Saprolegnia parasitica. Two applications are described: (i) In incubations of [10S-(3)H]- and [10R-(3)H]arachidonic acids in human psoriatic scales we show that a 12R-lipoxygenase accounts not only for synthesis of the major product 12R-HETE, but it contributes also, through subsequent isomerization, to the minor amounts of 12S-HETE. (ii) The [10R-(3)H]- and [10S-(3)H]arachidonic acids were also used to demonstrate that prostaglandin ring formation by cyclooxygenases does not involve carbocation formation at C-10 of arachidonic acid as was hypothesized recently.  相似文献   

19.
A patient with mantle cell lymphoma took 12g/day of ethyl-eicosapentaenoate for 16 months. Compared to reference values, eicosapentaenoic and docosapentaenoic acids were elevated in plasma, red cells and platelets but docosahexaenoic acid levels were in the normal range. Arachidonic acid levels were moderately reduced but dihomogammalinolenic acid levels remained in the normal range. In spite of a long chain n-3 fatty acid intake higher than in most Inuit populations, arachidonic acid levels remained considerably higher in this patient than in the Inuit. The implications for understanding of fatty acid metabolism in humans are discussed.  相似文献   

20.
When rats adapted to a fat-free diet were fed a corn oil diet, endogenous n-9 eicosatrienoic acid (the major polyunsaturated fatty acid) at the C-2 position of both phosphatidylcholine and phosphatidylethanolamine was quickly substituted by arachidonic acid in liver, plasma and platelets. Comparably, under a fish oil diet, the n-9 was quickly substituted by n-3 polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In both cases the n-9 almost disappeared in 6 days. On the other hand, when the dietary process was reversed, arachidonic acid in both the phospholipid classes (especially in phosphatidylcholine) decreased more slowly than the n-3 in the platelets and the liver mitochondria and microsomes. In platelets, even in linoleate-deficient rats, much arachidonic acid remained. However, arachidonic acid decreased similarly to the n-3 in the plasma. These results may reveal the physiological significance of arachidonic acid in membrane phospholipids, the replacement of arachidonic acid by the n-3 and the limitation of the replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号