首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro pollen germination and tube length studies are valuable in elucidating mechanisms (germination capacity and rate, tube growth rate) possibly associated with genetic differences in male transmission. On each of two collection dates, the percentage germination and tube length of the binucleate pollen grains from five diverse sesame (Sesamum indicum L.) genotypes were determined at eight times (30, 60, 90, 120, 150, 180, 240, 300 min) after inoculation on a semisolid medium containing 10% (100 g l-1) sucrose (C12H22O11), 0.4% (4 g l-1) purified agar (Fisher Lot 914409), 0.1% (1 g l-1) calcium nitrate [Ca(NO3)2 ⋅ 4H2O] and 0.01% (100 mg l-1) boric acid (H3BO3). Before heating, the pH of the medium was adjusted to 7.0 with a 0.1 N potassium hydroxide (KOH) solution. Over the five genotypes, 5% germination was found 30 min after inoculation and a maximum of 37% germination 120 min after inoculation with no significant changes thereafter. As indicated by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which germination was initiated and maximum germination attained. Over all five genotypes, the tube length was 91 μm 30 min after inoculation, reaching a maximum of 1000 μm 300 min after inoculation. As shown by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which tube length was observed and the maximum tube length was attained. Little or no relationship between percent germination and tube length was observed among the genotypes. For both percent germination and tube length, the statistical significance of collection date and its interactions with genotype and time after inoculation indicated that environment in the form of collection date was also an influencing factor. These results indicated that genetic differences among genotypes were present for in vitro germination capacity, germination rate and tube growth rate and that these factors singly or in combination could alter male transmission of genetic elements. Received: 5 February 1997 / Accepted: 23 June 1997  相似文献   

2.
* BACKGROUND AND AIMS: High-temperature environments with >30 degrees C during flowering reduce boll retention and yield in cotton. Therefore, identification of cotton cultivars with high-temperature tolerance would be beneficial in both current and future climates. * METHODS: Response to temperature (10-45 degrees C at 5 degrees C intervals) of pollen germination and pollen tube growth was quantified, and their relationship to cell membrane thermostability was studied in 12 cultivars. A principal component analysis was carried out to classify the genotypes for temperature tolerance. * KEY RESULTS: Pollen germination and pollen tube length of the cultivars ranged from 20 to 60 % and 411 to 903 microm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cultivar variation existed for cardinal temperatures (T(min), T(opt) and T(max)) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures calculated from the bilinear model for the 12 cultivars were 15.0, 31.8 and 43.3 degrees C for pollen germination and 11.9, 28.6 and 42.9 degrees C for pollen tube length. No significant correlations were found between pollen parameters and leaf membrane thermostability. Cultivars were classified into four groups based on principal component analysis. * CONCLUSIONS: Based on principal component analysis, it is concluded that higher pollen germination percentages and longer pollen tubes under optimum conditions and with optimum temperatures above 32 degrees C for pollen germination would indicate tolerance to high temperature.  相似文献   

3.
Signalling pathways in pollen germination and tube growth   总被引:6,自引:0,他引:6  
Malhó R  Liu Q  Monteiro D  Rato C  Camacho L  Dinis A 《Protoplasma》2006,228(1-3):21-30
Summary. Signalling is an integral component in the establishment and maintenance of cellular identity. In plants, tip-growing cells represent an ideal system to investigate signal transduction mechanisms, and among these, pollen tubes (PTs) are one of the favourite models. Many signalling pathways have been identified during germination and tip growth, namely, Ca2+, calmodulin, phosphoinositides, protein kinases, cyclic AMP, and GTPases. These constitute a large and complex web of signalling networks that intersect at various levels such as the control of vesicle targeting and fusion and the physical state of the actin cytoskeleton. Here we discuss some of the most recent advances made in PT signal transduction cascades and their implications for our future research. For reasons of space, emphasis was given to signalling mechanisms that control PT reorientation, so naturally many other relevant works have not been cited. Correspondence and reprints: Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.  相似文献   

4.
Summary Pollen grains containing either theWx,wx,Su 1,Su 1,Sh 2orsh 2alleles were stored for 0, 1, 2, 3, 4 or 5 days at 2 °C. After each storage period, a portion of each genotype was cultured on a 15% sucrose, 0.6% bacto-agar, 0.03% calcium nitrate and 0.01% boric acid medium, while another portion was placed on receptive silks, the number of kernels produced being a measure of fertilization ability. Regardless of the allele present in the pollen grain, 1 day of storage greatly increased the germination percentage and significantly increased pollen tube length. After 4 days of storage, there was noin vitro germination but some fertilization ability was found. The experiment was designed so that comparisons free from genetic background effects could be made between alleles at each locus. Significant differences at each storage period and a differential response to storage were obtained at some loci for germination percentage, ruptured percentage, pollen tube length and fertilization ability. A relationship between dominance of the allele and response to storage was detected only for fertilization ability. Since alleles at these loci affect the biochemical composition of pollen grains containing them, the results suggest that differences inin vitro germination characteristics and fertilization ability may be associated with biochemical composition.Journal Series Paper No. 3950, Florida Agricultural Experiment Station.  相似文献   

5.
P. L. Pfahler  H. F. Linskens 《Planta》1973,111(3):253-259
Summary Pollen grains from two hybrids, WF9xH55 (W) and K64xK55 (K) were collected and a sample from each was cultured immediately (0 h). The remainder was subdivided and stored at 2, 20, and 35° C. At 3, 6, 12, 24, 36, 48, 72, 96, and 120 h, a sample was cultured. The culture medium contained 15% sucrose, 0.6% bacto-agar, 0.03% calcium nitrate and 0.01% boric acid. Storage at 2° C resulted in a large increase in germination percentage in both W and K reaching a maximum at 24 h and then slowly decreasing with additional storage. No germination was observed at 96 h with W and at 120 h with K. The complete loss of germination occurred during a 24 h period and was very abrupt. At 20° C, a similar but less pronounced pattern was observed. However, after 24 h, aggregates of 50–1 000 pollen grains developed during storage in both W and K. Storage of W at 35° C slightly decreased the germination percentage at 3 h and eliminated it at 6 h. Storage of K at 35° C substantially increased the germination percentage at 3 h with further increases in storage periods resulting in the aggregation of grains. This general pattern of an increase at shorter storage periods followed by a gradual decrease as the storage period was extended, was found for pollen tube length and growth rate. In vitro germination characteristics can be substantially altered by the temperature and length of storage and the response to storage is associated with pollen source.Journal Series Paper No. 4566, Florida Agricultural Experiment Station.  相似文献   

6.
Summary One of the most interesting aspects of plant fertilization is the growth and orientation of the pollen tube from the stigma to the ovary. Considerable research has been carried out in this field but little is yet known about the mechanisms involved in the growth process. Recent research has been focused on the regulation of molecular events in order to discover the specific genes involved in tube growth. Important results in the biochemical and physiological aspects of molecular regulation have been reported. The following review attempts to cover these aspects. It is primarily based on talks presented by the authors at the 13th International Congress on Sexual Plant Reproduction and is mainly addressed to non-experts in the fields of electrophysiology and ion signalling. We aim to present a general overview of electrical currents, ion dynamics, and ion transporters in pollen, and their possible role during pollen tube germination and growth. Together with results on other tip-growing cells, a general model of pollen tube germination and growth as a self-organizing process is proposed.  相似文献   

7.
With regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.  相似文献   

8.
Toluidine blue is known to induce gynogenic haploids in significant numbersin Populus]. Because the efficacy of a chemical in inducing gynogenesis depends largely on its effeot on pollen germination, on pollen tube growth, and on male gamete formation, the effect of toluidine blue (0, 1, 10 and 100 mgl-1) on these processes was studied in treated pistils ofSolatium nigrum (4 X), as well as on cultured pollen grains ofS. nigrum andTrigonella foenumgraecum. Irrespective of the time of application, toluidine blue (1 and 10 mg I-1) had no effect on pollen germination or pollen tube growth in pistils ofS. nigrum; at 100 mg I-1 it invariably inhibited both the processes. Almost similar responses were elicited by cultured pollen grains. InT. foenum-graecum toluidine blue had no effeot on pollen germination and suppressed tube growth. Gamete formation was inhibited, to various degrees, at all the concentrations tested; at 100 ing I-1 hardly any pollen tube showed gamete formation. Based on our results, and those on other systems, the potentiality of toluidine blue as an inducer of gynogenesis has been analysed.  相似文献   

9.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

10.
The impact of meteorological conditions on in vitro pollen germination and pollen tube growth during the initial phases of the development of male flowers in the Pedunculate Oak, Quercus robur, is studied. Phenological observations of male flowers and pollen sampling were performed on the field trial established with grafted Pedunculate Oak clones. During the investigation, weather conditions (absolute minimum and maximum daily air temperature, minimum absolute relative humidity of air and amount of precipitation) were recorded by an automatic meteorological station installed at the field trial. Influence of meteorological conditions on pollen germination and pollen tube growth was studied in the following stages of male flower: (I) during the last ten days of flower bud dormancy, (II) during swelling of the buds, (III) during bud burst and beginning of male catkins elongation, (IV) during the final stage of male flower catkins elongation. High temperatures and low relative air humidity during the bud burst and beginning of the male catkins elongation reduced pollen germination and pollen tube growth. Weather conditions did not significantly affect pollen germination and pollen tube growth during the swelling of flower buds, or in the final stage of male catkins elongation.  相似文献   

11.
Using methods of quantitative fluorescent microscopy, we studied membrane potential changes during pollen germination and in growing pollen tubes. Two voltage-sensitive dyes were used, i.e., DiBAC4(3), to determine the mean membrane potential values in pollen grains and isolated protoplasts, and Di-4-ANEPPS, to map the membrane potential distribution on the surfaces of the pollen protoplast and pollen tube. We have shown that the activation of the tobacco pollen grain is accompanied by the hyperpolarization of the vegetative cell plasma membrane by about 8 mV. Lily pollen protoplasts were significantly hyperpolarized (−108 mV) with respect to the pollen grains (−23 mV) from which they were isolated. We have found the polar distribution of the membrane potential along the protoplast surface and the longitudinal potential gradient along the pollen tube. In the presence of plasma membrane H+-ATPase inhibitor sodium orthovanadate (1 mM) or its activator fusicoccin (1 μM), the longitudinal voltage gradient was modified, but did not disappear. Anion channel blocker NPPB (40 μM) fully discarded the gradient in pollen tubes. The obtained results indicate the hyperpolarization of the plasma membrane during pollen germination and uneven potential distribution on the pollen grain and tube surfaces. An inhibitory analysis of the distribution of the potential in the tube has revealed the involvement of the plasma membrane H+-ATPase and anion channels in the regulation of its value.  相似文献   

12.
He JM  Bai XL  Wang RB  Cao B  She XP 《Physiologia plantarum》2007,131(2):273-282
The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m−2 UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S -nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor NG -nitro- l -Arg-methyl eater ( l -NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l -NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks.  相似文献   

13.
山玉兰花粉离体萌发和花粉管生长特性的研究   总被引:1,自引:0,他引:1  
山玉兰(Magnolia delavayi)是木兰科木兰属的常绿乔木或大型灌木,是重要的园林造景、庭院绿化素材,也是重要的育种资源。山玉兰花粉的研究对其杂交育种的成败具有重要影响,但目前尚未见其花粉活力的相关报道。该研究以新鲜的山玉兰花粉为对象,采用悬滴培养法分析了温度、光照以及培养液的蔗糖和硼酸浓度对山玉兰花粉萌发的影响。结果表明:(1)山玉兰花粉萌发时,最适宜的温度为27℃。(2)光暗条件下,山玉兰花粉以浓度为5%的蔗糖培养效果最佳,其萌发率在16%以上;而硼酸浓度则以0.001%的培养效果最佳。(3)蔗糖与硼酸共同作用可有效促进花粉萌发和花粉管生长。其中,在光照条件下,以5.0%蔗糖+0.001%硼酸为最适宜的培养液,花粉萌发率达41.27%,花粉管长达281.49μm;而在黑暗条件下,则以5.0%蔗糖+0.01%硼酸为最适宜的培养液,花粉萌发率达45.71%,花粉管长达254.00μm。该研究结果为进一步开展人工辅助授粉、发掘山玉兰的种质资源工作奠定了基础。  相似文献   

14.
UV-B辐射对植物花粉萌发率和花粉管生长的累积效应   总被引:2,自引:1,他引:2  
研究了19种植物花粉在不同UV-B辐射强度和辐照时间下其萌发率和花粉管伸长的变化,结果表明,UV-B辐射增加显著抑制大多数植物花粉的萌发率和花粉管生长;与对照相比,较高强度的UV-B对花粉的抑制作用大于较低强度;几个种的花粉萌发率及花粉管生长对UV-B增强不敏感,甚至被UV-B辐射所促进;辐射时间越长,对花粉抑制作用愈大,说明具有辐射累积效应,由此可知,植物花粉的萌发过程对UV-B的敏感性变化在自然条件下将会产生严重的生态学后果。  相似文献   

15.
Gibbon BC  Kovar DR  Staiger CJ 《The Plant cell》1999,11(12):2349-2363
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.  相似文献   

16.
Li HM  Chen H  Yang ZN  Gong JM 《FEBS letters》2012,586(7):1027-1031
Pollen germination and tube growth are of essential importance to sexual reproduction of flowering plants. Several biological processes including cell wall biosynthesis and modification are known to be involved in pollen tube growth, though the underlying molecular mechanisms remain largely to be investigated. Here we report the identification and functional characterization of the Arabidopsis gene Cdi, which encodes a putative nucleotide-diphospho-sugar transferase. Cdi is preferentially expressed in pollen grains and pollen tubes. Transient expression of Cdi:GFP fusion protein showed that CDI is localized in the cytosol. Mutation in Cdi impaired pollen germination and pollen tube growth thus leading to disrupted male transmission. These results suggest that Cdi is an essential gene required for pollen germination and tube growth.  相似文献   

17.
18.
Chen D  Zhao J 《Physiologia plantarum》2008,134(1):202-215
Although many studies have emphasized the importance of auxin in plant growth and development, the thorough understanding of its effect on pollen–pistil interactions is largely unknown. In this study, we investigated the role of free IAA in pollen–pistil interactions during pollen germination and tube growth in Nicotiana tabacum L. through using histo and subcellular immunolocalization with auxin monoclonal antibodies, quantification by HPLC and ELISA together with GUS staining in DR5::GUS -transformed plants. The results showed that free IAA in unpollinated styles was higher in the apical part and basal part than in the middle part, and it was more abundant in the transmitting tissue (TT). At the stage of pollen germination, IAA reached its highest content in the stigma and was mainly distributed in TT. After the pollen tubes entered the styles, the signal increased in the part where pollen tubes would enter and then rapidly declined in the part where pollen tubes had penetrated. Subcellular localization confirmed the presence of IAA in TT cells of stigmas and styles. Accordingly, a schematic diagram summarizes the changing pattern of free IAA level during flowering, pollination and pollen tube growth. Furthermore, we presented evidence that low concentration of exogenous IAA could, to a certain extent, facilitate in vitro pollen tube growth. These results suggest that IAA may be directly or indirectly involved in the pollen–pistil interactions. Additionally, some improvements of the IAA immunolocalization technique were made.  相似文献   

19.
Zi H  Xiang Y  Li M  Wang T  Ren H 《Protoplasma》2007,230(3-4):183-191
Summary. Phenylarsine oxide (PAO) and genistein are two well-known specific inhibitors of tyrosine phosphatases and kinases, respectively, that have been used in the functional analysis of the status of protein phosphotyrosine in different cell types. Our experiments showed that both PAO and genistein arrested pollen germination and pollen tube growth and led to the malformation of the pollen tubes, although genistein had a lesser effect. The malformations of the pollen tubes caused by PAO and genistein were, however, quite different. In addition, it was found that the rate of pollen germination and tube growth recovered to a certain extent when phalloidin was present during PAO treatment, but not when it was present during genistein treatment. Furthermore, PAO treatment also had a great effect on the dynamic organization of filamentous actin in the pollen grain and pollen tube, while genistein only caused reorganization of actin at the turning point of the pollen tube. Our results suggest that reversible protein tyrosine phosphorylation is a crucial step in pollen germination and pollen tube growth, but that tyrosine kinases and phosphatases may have different effects which may function through the reorganization of the actin cytoskeleton. Correspondence and reprints: Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, People’s Republic of China.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号