首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some instances when relatively SP-D-resistant strains were treated with SP-D and HNPs. HNPs were found to bind to the neck and/or carbohydrate recognition domain of SP-D. This binding was specific because no, or minimal, binding to other collectins was found. HNPs precipitated SP-D from bronchoalveolar lavage fluid and reduced the antiviral activity of bronchoalveolar lavage fluid. HNP-1 and -2 differed somewhat in their independent antiviral activity and their binding to SP-D. These results are relevant to the early phase of host defense against IAV, and suggest a complex interplay between SP-D and HNPs at sites of active inflammation.  相似文献   

2.
Oxidants and neutrophils contribute to lung injury during influenza A virus (IAV) infection. Surfactant protein (SP)-D plays a pivotal role in restricting IAV replication and inflammation in the first several days after infection. Despite its potent anti-inflammatory effects in vivo, preincubation of IAV with SP-D in vitro strongly increases neutrophil respiratory burst responses to the virus. Several factors are shown to modify this apparent proinflammatory effect of SP-D. Although multimeric forms of SP-D show dose-dependent augmentation of respiratory burst responses, trimeric, single-arm forms either show no effect or inhibit these responses. Furthermore, if neutrophils are preincubated with multimeric SP-D before IAV is added, oxidant responses to the virus are significantly reduced. The ability of SP-D to increase neutrophil uptake of IAV can be dissociated from enhancement of oxidant responses. Finally, several other innate immune proteins that bind to SP-D and/or IAV (i.e., SP-A, lung glycoprotein-340 or mucin) significantly reduce the ability of SP-D to promote neutrophil oxidant response. As a result, the net effect of bronchoalveolar lavage fluids is to increase neutrophil uptake of IAV while reducing the respiratory burst response to virus.  相似文献   

3.
Surfactant protein D (SP-D) and neutrophils participate in the early innate immune response to influenza A virus (IAV) infection. SP-D increases neutrophil uptake of IAV and modulates neutrophil respiratory burst responses to IAV; however, neutrophil proteases have been shown to degrade SP-D, and human neutrophil peptide defensins bind to SP-D and can cause precipitation of SP-D from bronchoalveolar lavage fluid (BALF). BALF has significant antiviral activity against IAV. We first added neutrophils to BALF during incubation with IAV. Addition of neutrophils to BALF caused significantly greater clearance of IAV from culture supernatants than from BALF alone, and this effect was significantly more pronounced when neutrophils were activated during incubation with the virus. In contrast, if activated neutrophils were incubated with BALF before addition of virus, they reduced antiviral activity of BALF. This effect correlated with depletion of SP-D from BALF. Activation of neutrophils with agonists that induce primary granule release (including release of human neutrophil peptide defensins) caused SP-D depletion, but activation with PMA, which causes only secondary granule release, did not. The ability of activated neutrophils to deplete SP-D from BALF was partially, but not fully, corrected with protease inhibitors but was unaffected by inhibition of neutrophil respiratory burst responses. These results suggest that chronic neutrophilic inflammation (e.g., as in chronic smoking or cystic fibrosis) may reduce SP-D levels and predispose to IAV infection. In contrast, acute inflammation, as occurs in the early phase of IAV infection, may promote neutrophil-mediated viral clearance.  相似文献   

4.
Human neutrophil peptides (HNPs) 1, 2 and 3 are antimicrobial peptides localized in the azurophil granules of neutrophils. We investigated the effects of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the biosynthesis of HNPs 1-3 using a sensitive radioimmunoassay and Northern blot analysis. Seven patients with lung cancer were first treated with various anticancer agents for 3 days (days 1-3) followed by treatment with rhG-CSF (2 microgram/kg weight/day) for 7 days (days 8-14). Chemotherapy caused neutropenia but the neutrophil count increased biphasically between days 8 and 14. Chemotherapy did not change the baseline plasma concentration of HNPs 1-3 (74.1+/-2.1 pmol/ml) but the concentration increased from day 12, 5 days after commencement of rhG-CSF therapy, to reach a peak value of 430.8+/-57.0 pmol/ml on day 15, 1 day after the last administration of rhG-CSF. Baseline HNPs 1-3 content per neutrophil was 0.59+/-0.02 fmol, decreased to 0.30+/-0.07 fmol on day 9, then increased to 0.78+/-0.07 fmol on day 15. Analyses of peripheral blood neutrophils by Northern blot and reverse-phase high-performance liquid chromatography showed that the amounts of HNPs 1-3 mRNA and precursors of HNPs 1-3 markedly increased in response to rhG-CSF. Our results indicate that recombinant hG-CSF does not only increase neutrophil count but stimulates HNPs 1-3 biosynthesis in neutrophils, thus enhancing the host defense system of compromised hosts with neutropenia.  相似文献   

5.
Collectins are secreted collagen-like lectins that bind, agglutinate, and neutralize influenza A virus (IAV) in vitro. Surfactant proteins A and D (SP-A and SP-D) are collectins expressed in the airway and alveolar epithelium and could have a role in the regulation of IAV infection in vivo. Previous studies have shown that binding of SP-D to IAV is dependent on the glycosylation of specific sites on the HA1 domain of hemagglutinin on the surface of IAV, while the binding of SP-A to the HA1 domain is dependent on the glycosylation of the carbohydrate recognition domain of SP-A. Here, using SP-A and SP-D gene-targeted mice on a common C57BL6 background, we report that viral replication and the host response as measured by weight loss, neutrophil influx into the lung, and local cytokine release are regulated by SP-D but not SP-A when the IAV is glycosylated at a specific site (N165) on the HA1 domain. SP-D does not protect against IAV infection with a strain lacking glycosylation at N165. With the exception of a small difference on day 2 after infection with X-79, we did not find any significant difference in viral load in SP-A(-/-) mice with either IAV strain, although small differences in the cytokine responses to IAV were detected in SP-A(-/-) mice. Mice deficient in both SP-A and SP-D responded to IAV similarly to mice deficient in SP-D alone. Since most strains of IAV currently circulating are glycosylated at N165, SP-D may play a role in protection from IAV infection.  相似文献   

6.
The carbohydrate recognition domains (CRDs) of human serum mannose-binding lectin (MBL) and pulmonary surfactant protein D (SP-D) have distinctive monosaccharide-binding properties, and their N-terminal and collagen domains have very different quaternary structures. We produced a chimeric protein containing the N terminus and collagen domain of human SP-D and the neck region and CRD of human MBL (SP-D/MBLneck+CRD) to create a novel human collectin. The chimera bound to influenza A virus (IAV), inhibited IAV hemagglutination activity and infectivity, and induced aggregation of viral particles to a much greater extent than MBL. Furthermore, SP-D/MBLneck+CRD caused much greater increases in neutrophil uptake of, and respiratory burst responses to, IAV than MBL. These results indicate that pathogen interactions mediated by the MBL CRD are strongly influenced by the N-terminal and collagen-domain backbone to which it is attached. The presence of the CRD of MBL in the chimera resulted in altered monosaccharide binding properties compared with SP-D. As a result, the chimera caused greater aggregation and neutralization of IAV than SP-D. Distinctive functional properties of collectin collagenous domains and CRDs can be exploited to generate novel human collectins with potential for therapy of influenza.  相似文献   

7.
Collectins are multimeric host defence lectins with trimeric CRDs (carbohydrate-recognition domains) and collagen and N-terminal domains that form higher-order structures composed of four or more trimers. Recombinant trimers composed of only the CRD and adjacent neck domain (termed NCRD) retain binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity. Using a panel of mAbs (monoclonal antibodies) directed against the NCRD in the present study we show that mAbs binding near the lectin site inhibit antiviral activity of full-length SP-D, but mAbs which bind other sites on the CRD do not. Two of the non-blocking mAbs significantly increased binding and antiviral activity of NCRDs as assessed by haemagglutination and neuraminidase inhibition and by viral neutralization. mAb-mediated cross-linking also enabled NCRDs to induce viral aggregation and to increase viral uptake by neutrophils and virus-induced respiratory burst responses by these cells. These results show that antiviral activities of SP-D can be reproduced without the N-terminal and collagen domains and that cross-linking of NCRDs is essential for antiviral activity of SP-D with respect to IAV.  相似文献   

8.
Neutrophils release DNA-based extracellular traps to capture and kill bacteria. The mechanism(s) and proteins that promote neutrophil extracellular trap (NET)-mediated bacterial trapping are not clearly established. Surfactant protein D (SP-D) is an innate immune collectin present in many mucosal surfaces. We hypothesized that SP-D can bind both the pathogens and NETs to augment NET-mediated bacterial trapping. To test this hypothesis, we used LPS and Pseudomonas aeruginosa pneumonia mouse models and performed in vivo and ex vivo assays. In this study, we show that NETs are produced by the neutrophils recruited to the airways in response to the bacterial ligand. Notably, NETs are detected as short fragments of DNA-protein complexes in the airways as opposed to the long stringlike structures seen in ex vivo cultures. SP-D recognizes both the short NET fragments and the long NET DNA structures. SP-D-NET copurification studies further show that SP-D can simultaneously recognize NETs and carbohydrate ligands in vivo. Similar to the LPS model, soluble DNA-protein complexes and increased amounts of SP-D are detected in the murine model of P. aeruginosa pneumonia. We then tested the effect of SP-D on NET-mediated trapping of P. aeruginosa by means of Western blots, fluorescence microscopy, and scanning electron microscopy. Results of these experiments show that SP-D microagglutinates P. aeruginosa and allows an efficient bacterial trapping by NETs. Collectively, these findings provide a unique biological relevance for SP-D-DNA interactions and places SP-D as an important innate immune protein that promotes bacterial trapping by NETs during neutrophil-mediated host defense.  相似文献   

9.
Surfactant protein D (SP-D) plays important roles in innate immunity including the defense against bacteria, fungi, and respiratory viruses. Because SP-D specifically interacts with neutrophils that infiltrate the lung in response to acute inflammation and infection, we examined the hypothesis that the neutrophil-derived serine proteinases (NSPs): neutrophil elastase, proteinase-3, and cathepsin G degrade SP-D. All three human NSPs specifically cleaved recombinant rat and natural human SP-D dodecamers in a time- and dose-dependent manner, which was reciprocally dependent on calcium concentration. The NSPs generated similar, relatively stable, disulfide cross-linked immunoreactive fragments of approximately 35 kDa (reduced), and sequencing of a major catheptic fragment definitively localized the major sites of cleavage to a highly conserved subregion of the carbohydrate recognition domain. Cleavage markedly reduced the ability of SP-D to promote bacterial aggregation and to bind to yeast mannan in vitro. Incubation of SP-D with isolated murine neutrophils led to the generation of similar fragments, and cleavage was inhibited with synthetic and natural serine proteinase inhibitors. In addition, neutrophils genetically deficient in neutrophil elastase and/or cathepsin G were impaired in their ability to degrade SP-D. Using a mouse model of acute bacterial pneumonia, we observed the accumulation of SP-D at sites of neutrophil infiltration coinciding with the appearance of approximately 35-kDa SP-D fragments in bronchoalveolar lavage fluids. Together, our data suggest that neutrophil-derived serine proteinases cleave SP-D at sites of inflammation with potential deleterious effects on its biological functions.  相似文献   

10.
Altering the carbohydrate binding properties of surfactant protein D (SP-D) [e.g., by replacing its carbohydrate recognition domain (CRD) with that of either mannose binding lectin (MBL) or conglutinin] can increase its activity against influenza A virus (IAV). The current study demonstrates that the degree of multimerization of SP-D is another independent determinant of antiviral activity. A chimeric collectin containing the N-terminus and collagen domain of human SP-D and the CRD of MBL formed high-molecular-weight multimers similar to those previously described for human SP-D. Using several complementary assays, and diverse viral strains, the chimeric multimers showed greater anti-IAV activity than similarly multimerized preparations of SP-D or incompletely oligomerized preparations of the chimera. More highly multimerized preparations of the chimera also caused greater increases in uptake of IAV by neutrophils. These studies may have implications for development of collectins as therapeutic agents and understanding of natural variations in susceptibility to IAV infection.  相似文献   

11.
Mice lacking surfactant protein surfactant protein D (SP-D(-/-)) and wild-type mice (SP-D(+/+)) were infected with influenza A virus (IAV) by intranasal instillation. IAV infection increased the endogenous SP-D concentration in wild-type mice. SP-D-deficient mice showed decreased viral clearance of the Phil/82 strain of IAV and increased production of inflammatory cytokines in response to viral challenge. However, the less glycosylated strain of IAV, Mem/71, which is relatively resistant to SP-D in vitro, was cleared efficiently from the lungs of SP-D(-/-) mice. Viral clearance of the Phil/82 strain of IAV and the cytokine response were both normalized by the coadministration of recombinant SP-D. Since the airway is the usual portal of entry for influenza A virus and other respiratory pathogens, SP-D is likely to play an important role in innate defense responses to IAV.  相似文献   

12.
Previous studies have indicated that neutrophils are required for the development of increased lung vascular permeability after thrombin-induced pulmonary microembolization. In this study, we examined neutrophil kinetics and uptake in the sheep lung before and after lung vascular injury. Sheep neutrophils were isolated by a Percoll-gradient method and labeled with indium-111 oxine. A maximum lung activity of 40% of the injected indium-111 neutrophil activity was attained 8-12 min after the injection. The calculated half-lives of both circulating and pulmonary neutrophils were 700 min. The rate of washout of labeled neutrophils from the lungs was the same as the loss of the peripheral blood activity, indicating removal of neutrophils from the lung and blood by a common pathway (e.g., liver and spleen). Intravenous infusion of alpha-thrombin resulted in an immediate uptake of neutrophils of 14% above the base-line activity. The increased uptake was associated with an immediate decrease in the blood activity, indicating sequestration of the neutrophils in the pulmonary circulation. The neutrophil uptake after alpha-thrombin was transient, reaching a maximum 15 min after infusion. Neutrophil uptake did not occur with alpha-thrombin (which lacks the fibrinogen recognition site), suggesting that the uptake was secondary to intravascular coagulation. An increase in the pulmonary blood volume cannot explain the increased neutrophil sequestration because pulmonary blood volume determined by [99mTc]pertechnetate-labeled erythrocytes did not increase after the alpha-thrombin infusion. Therefore, alpha-thrombin results in a transient neutrophil sequestration in the lung, and the response is secondary to the intravascular coagulation induced by the alpha-thrombin.  相似文献   

13.
The recognition of influenza A virus (IAV) by surfactant protein D (SP-D) is mediated by interactions between the SP-D carbohydrate recognition domains (CRD) and glycans displayed on envelope glycoproteins. Although native human SP-D shows potent antiviral and aggregating activity, trimeric recombinant neck+CRDs (NCRDs) show little or no capacity to influence IAV infection. A mutant trimeric NCRD, D325A/R343V, showed marked hemagglutination inhibition and viral neutralization, with viral aggregation and aggregation-dependent viral uptake by neutrophils. D325A/R343V exhibited glucose-sensitive binding to Phil82 hemagglutinin trimer (HA) by surface plasmon resonance. By contrast, there was very low binding to the HA trimer from another virus (PR8) that lacks glycans on the HA head. Mass spectrometry demonstrated the presence of high mannose glycans on the Phil82 HA at positions known to contribute to IAV binding. Molecular modeling predicted an enhanced capacity for bridging interactions between HA glycans and D325A/R343V. Finally, the trimeric D325A/R343V NCRD decreased morbidity and increased viral clearance in a murine model of IAV infection using a reassortant A/WSN/33 virus with a more heavily glycosylated HA. The combined data support a model in which altered binding by a truncated mutant SP-D to IAV HA glycans facilitates viral aggregation, leading to significant viral neutralization in vitro and in vivo. These studies demonstrate the potential utility of homology modeling and protein structure analysis for engineering effective collectin antivirals as in vivo therapeutics.  相似文献   

14.
Polymorphonuclear leukocytes (PMNs) play an important role during inflammation in cardiovascular diseases. Human neutrophil peptides (HNPs) are released from PMN granules upon activation and are conventionally involved in microbial killing. Recent studies suggested that HNPs may be involved in the pathogenesis of vascular abnormality by modulating inflammatory responses and vascular tone. Since HNPs directly interact with endothelium upon release from PMNs in the circulation, we tested the hypothesis that the stimulation with HNPs of endothelial cells modulates the expression of vasoactive by-products through altering cyclooxygenase (COX) activity. When human umbilical vein endothelial cells were stimulated with purified HNPs, we observed a time- and dose-dependent increase in the expression of COX-2, whereas COX-1 levels remained unchanged. Despite an increased expression of COX-2 at the protein level, HNPs did not significantly enhance the COX-2 activity, thus the production of the prostaglandin PGI2. HNPs significantly induced the release of endothelin-1 (ET-1) as well as the formation of nitrotyrosine. The HNP-induced COX-2 and ET-1 production was attenuated by the treatment with the oxygen free radical scavenger N-acetyl-L-cysteine and the inhibitors of p38 MAPK and NF-kappaB, respectively. The angiontensin II pathway did not seem to be involved in the HNP-induced upregulation of COX-2 and ET-1 since the use of the angiotensin-converting enzyme inhibitor enalapril had no effect in this context. In conclusion, HNP may play an important role in the pathogenesis of inflammatory cardiovascular diseases by activating endothelial cells to produce vasoactive by-products as a result of oxidative stress.  相似文献   

15.
We previously demonstrated that bovine serum conglutinin has markedly greater ability to inhibit influenza A virus (IAV) infectivity than other collectins. We now show that recombinant conglutinin and a chimeric protein containing the NH(2) terminus and collagen domain of rat pulmonary surfactant protein D (rSP-D) fused to the neck region and carbohydrate recognition domain (CRD) of conglutinin (termed SP-D/Cong(neck+CRD)) have markedly greater ability to inhibit infectivity of IAV than wild-type recombinant rSP-D, confirming that the potent IAV-neutralizing activity of conglutinin resides in its neck region and CRD. Furthermore, by virtue of incorporation of the NH(2) terminus and collagen domain of SP-D, SP-D/Cong(neck+CRD) caused substantially greater aggregation of IAV particles and enhancement of neutrophil binding of, and H(2)O(2) responses to, IAV than recombinant conglutinin or recombinant rSP-D. Hence, SP-D/Cong(neck+CRD) combined favorable antiviral and opsonic properties of conglutinin and SP-D. This study demonstrates an association of specific structural domains of SP-D and conglutinin with specific functional properties and illustrates that antimicrobial activities of wild-type collectins can be enhanced through recombinant strategies.  相似文献   

16.
The pathogenesis of many lung diseases involves neutrophilic inflammation. Neutrophil functions, in turn, are critically dependent on glucose uptake and glycolysis to supply the necessary energy to meet these functions. In this study, we determined the effects of p38 mitogen-activated protein kinase and hypoxia-inducible factor (HIF)-1, as well as their potential interaction, on the expression of membrane glucose transporters and on glucose uptake in murine neutrophils. Neutrophils were harvested and purified from C57BL/6 mice and stimulated with lipopolysaccharide (LPS) in the presence or absence of specific p38 and HIF-1 inhibitors. Glucose uptake was measured as the rate of [3H]deoxyglucose (DG) uptake. We identified GLUT-1 in mouse neutrophils, but neither GLUT-3 nor GLUT-4 were detected using Western blot analysis, even after LPS stimulation. LPS stimulation did not increase GLUT-1 protein levels but did cause translocation of GLUT-1 from the cell interior to the cell surface, together with a dose-dependent increase in [3H]DG uptake, indicating that glucose uptake is regulated in these cells. LPS also activated both p38 and the HIF-1 pathway. Inhibitors of p38 and HIF-1 blocked GLUT-1 translocation and [3H]DG uptake. These data suggest that LPS-induced increases in neutrophil glucose uptake are mediated by GLUT-1 translocation to the cell surface in response to sequential activation of neutrophil p38 and HIF-1alpha in neutrophils. Given that neutrophil function and glucose metabolism are closely linked, control of the latter may represent a new target to ameliorate the deleterious effects of neutrophils on the lungs.  相似文献   

17.
Phillipson M  Kubes P 《Nature medicine》2011,17(11):1381-1390
Here we focus on how neutrophils have a key regulatory role in vascular inflammation. Recent studies using advanced imaging techniques have yielded new insights into the mechanisms by which neutrophils contribute to defense against bacterial infections and also against sterile injury. In these settings, neutrophils are recruited by various mechanisms depending on the situation. We also describe how these processes may be disrupted in systemic infections, with a particular emphasis on mouse models of sepsis. Neutrophils are often immobilized in the lungs and liver during systemic infections, and this immobilization may be a mechanism through which bacteria can evade the innate immune response or allow neutrophils to form neutrophil extracellular traps that trap and kill bacteria in blood. The platelet is also an important player in sepsis, and we describe how it collaborates with neutrophils in the formation of neutrophil extracellular traps.  相似文献   

18.
Porcine surfactant protein D (pSP-D) displays distinctively strong, broad-range inhibitory activity against influenza A virus (IAV). N-Linked glycosylation of the carbohydrate recognition domain (CRD) of pSP-D contributes to the high affinity of this collectin for IAV. To investigate the role of the N-linked glycan further, HEK293E protein expression was used to produce recombinant pSP-D (RpSP-D) that has similar structural and antiviral properties as NpSP-D. We introduced an additional N-linked glycan in the CRD of RpSP-D but this modification did not alter the antiviral activity. Human SP-D is unglycosylated in its CRD and less active against IAV compared with pSP-D. In an attempt to modify its antiviral properties, several recombinant human SP-D (RhSP-D) mutants were constructed with N-linked glycans introduced at various locations within its CRD. To retain lectin activity, necessary for the primary interactions between SP-D and IAV, N-linked glycosylation of RhSP-D was shown to be restricted to the corresponding position in the CRD of either pSP-D or surfactant protein A (SP-A). These N-glycosylated RhSP-D mutants, however, did not show increased neutralization activity against IAV. By developing RhSP-D mutants that also have the pSP-D-specific Ser-Gly-Ala loop inserted in the CRD, we could demonstrate that the N-linked glycan-mediated interactions between pSP-D and IAV involves additional structural prerequisites of the pSP-D CRD. Ultimately, these studies will help to develop highly effective SP-D-based therapeutic and prophylactic drugs against IAV.  相似文献   

19.
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on tissues and other surfaces. We characterized the interaction of purified human neutrophils with P. aeruginosa, growing in biofilms, with regard to morphology, oxygen consumption, phagocytosis, and degranulation. Scanning electron and confocal laser microscopy indicated that the neutrophils retained a round, unpolarized, unstimulated morphology when exposed to P. aeruginosa PAO1 biofilms. However, transmission electron microscopy demonstrated that neutrophils, although rounded on their dorsal side, were phagocytically active with moderate membrane rearrangement on their bacteria-adjacent surfaces. The settled neutrophils lacked pseudopodia, were impaired in motility, and were enveloped by a cloud of planktonic bacteria released from the biofilms. The oxygen consumption of the biofilm/neutrophil system increased 6- and 8-fold over that of the biofilm alone or unstimulated neutrophils in suspension, respectively. H(2)O(2) accumulation was transient, reaching a maximal measured value of 1 micro M. Following contact, stimulated degranulation was 20-40% (myeloperoxidase, beta-glucuronidase) and 40-80% (lactoferrin) of maximal when compared with formylmethionylleucylphenylalanine plus cytochalasin B stimulation. In summary, after neutrophils settle on P. aeruginosa biofilms, they become phagocytically engorged, partially degranulated, immobilized, and rounded. The settling also causes an increase in oxygen consumption of the system, apparently resulting from a combination of a bacterial respiration and escape response and the neutrophil respiratory burst but with little increase in the soluble concentration of H(2)O(2). Thus, host defense becomes compromised as biofilm bacteria escape while neutrophils remain immobilized with a diminished oxidative potential.  相似文献   

20.
In order for neutrophils to function effectively in host defense, they have evolved specific attributes including the ability to migrate to the site of inflammation and release an array of toxic products including proteolytic enzymes, reactive oxygen species, and cationic proteins. While these compounds are intended for killing invading pathogens, if released inappropriately, they may also contribute to tissue damage. Such inflammatory tissue injury may be important in the pathogenesis of a variety of clinical disorders including arthritis, ischemia-reperfusion tissue injury, the systemic inflammatory response syndrome (SIRS), and the acute respiratory distress syndrome (ARDS). Despite the importance of neutrophil function in host defense and dysfunction in disease states, much remains unknown about the intracellular signaling pathways regulating neutrophil activity. This review will focus on the signaling molecules regulating leukocyte ‘effector’ functions including receptors, GTP-binding proteins, phospholipases, polyphosphoinositide metabolism, and protein kinases and phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号