首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between cytochrome f and its electron acceptor plastocyanin (PC) was studied. To address the question of which specific regions and which of the positively charged residues of cytochrome f are important for the interaction with the negatively charged residues of PC we have used two different experimental approaches. Cytochrome f was proteolytically cleaved and fragments that could bind to a PC-affinity column were isolated. The smallest of these fragments was analysed to give information on the minimum structural requirement for binding to PC. By this procedure, we identified a peptide of approx. 11 kDa, containing the heme binding site, and having an N-terminal sequence identical to that of the mature cytochrome f. This finding suggests that the first 90 amino acids of cytochrome f contain at least some of the residues interacting with PC. The second approach involved modification of Arg residues of cytochrome f with the specific chemical modifier, hydroxyphenylglyoxal (HPG). Cytochrome f modification was performed in the absence of PC to enable identification of residues that are protected from modification when PC is bound to cytochrome f. Two peptides containing Arg residues which are modified in the absence of PC, but are not modified when PC is present, were isolated. Sequence analysis of these two peptides revealed that Arg residues no. 88 and 154 of cytochrome f are the residues that are protected from modification when cytochrome f is bound to PC, suggesting a role for these residues in the binding of cytochrome f to PC.  相似文献   

2.
Structural change of Cytochrome c peroxidase (CcP) due to interaction with lysine peptides (Lysptds) has been studied by absorption spectra and measurements on electron transfer between cytochrome c (cyt c) and CcP in the presence of Lysptd. Peaks were observed in the difference absorption spectrum of CcP between in the presence and absence of Lysptds, demonstrating a structural perturbation of CcP, at least at its heme site, on interaction with Lysptd. The interaction between CcP and Lysptd was electrostatic, since no significant peak was detected in the difference absorption spectrum when 100 mM of NaCl was added to the solution. Lysptds competitively inhibited electron transfer from cyt c to CcP, which indicated that they interacted with CcP at the same site as cyt c and would be models of the CcP interacting site of cyt c.  相似文献   

3.
Compartmentation of ATP within renal proximal tubular cells   总被引:2,自引:0,他引:2  
Temperature-dependent spin changes of the heme iron atom on cytochrome P-450scc were studied by optical absorption and circular dichroism measurements. The optical absorption and circular dichroism spectra of cholesterol-free cytochrome P-450scc did not change between 10 and 26 degrees C. In contrast, the absorbance at 390 nm and the ellipticity at 330 nm of cholesterol-bound cytochrome P-450scc decreased upon temperature elevation, and the absorbance at 424 nm correspondingly increased. These spectral changes were reversible in respect of temperature. The far-ultraviolet circular dichroism spectra of both cholesterol-bound and -free cytochrome P-450scc were not affected by temperature. In addition, bound cholesterol molecule is not released from the cytochrome molecule by increasing temperature. From these results, we propose that temperature modulates specific interactions between the heme protein and bound cholesterol rather than the gross secondary structural changes of the protein.  相似文献   

4.
The cytochromes of membranes of the cydA mutant Escherichia coli GR19N grown on a proline-amino acid medium were examined. Reduced minus oxidized difference spectra (including fourth-order finite difference spectra) showed that cytochromes with absorption maxima at 554-555, 556-557, 560-561.5 and 563.5-564.5 nm were present. In addition, there were two components with absorption maxima at 548.5 and 551.5 nm which made a minor contribution to the alpha-band absorbance. These were not examined further. Two pools within the cytochromes were detected. One pool, which was reduced rapidly by the substrates NADH, formate and succinate, consisted of cytochromes of the cytochrome o complex. These cytochromes had absorption maxima at 555, 557 and 563.5 nm. In addition, the low-potential cytochrome associated with formate dehydrogenase was reduced rapidly by formate, and a component absorbing at 560-561.5 nm was also present in this pool. The second pool of cytochromes was reduced more slowly by substrate, although the rate was accelerated greatly in the presence of the electron mediator phenazine methosulfate. These cytochromes absorbed maximally at about 556.5 nm. A portion of the cytochrome in this pool was reoxidized by fumarate. This cytochrome may be a component of the fumarate reductase pathway, since the membranes showed high NADH-fumarate reductase activity. The respiratory chain inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide appeared to act at two sites. One site of inhibition was between the dehydrogenases and the cytochromes. A second site of inhibition was located in the cytochrome o complex between cytochrome b-564 and oxygen.  相似文献   

5.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

6.
A tryptic resistant heme peptide has been prepared and purified from cardiac cytochrome c1. This purified peptide is not further hydrolyzed by reactions of other proteolytic enzymes, such as pronase. The peptide contains 2 residues each of serine, cysteine and valine, and 1 residue each of alanine, methionine, tyrosine, histidine, arginine, proline, glutamic acid (glutamine) and aspartic acid. The intensity of the absorption spectrum of the peptide has been found to be dependent upon, but the positions of the absorption maxima do not vary with, concentration. The heme peptide does not show multiple splitting of absorption peaks at liquid N2 temperatures as does the intact cytochrome C1. However, cyanide rapidly reacts with the peptide and causes significant spectral changes. CD spectra of the peptide exhibit a typical profile of a non-structured heme peptide with positive CD bands in the Soret region and around 250 nm, and a broad negative extreme of 320-360 nm. The similarities and differences between the tryptic resistant heme peptides from cytochromes c1 and c have been compared.  相似文献   

7.
Structural studies carried out on a cross-linked complex between cytochrome c3 and ferredoxin I, both isolated from Desulfovibrio desulfuricans Norway, allowed the identification of the site of interaction between the two redox proteins. Staphylococcus aureus proteinase and chymotrypsin digestions led to characterization of peptides containing both cytochrome c3 and ferredoxin sequences. The cytochrome c3 sequences involved in the three isolated cross-linked peptides contained several lysine residues localized around the heme 4 crevice. This analysis stressed the peculiar role of lysines 100, 101, 103, 104 and 113, which could be considered as major cross-link sites, as opposed to the lysines 75, 79 and 82, which could be considered as minor cross-link sites. One cross-linked peptide, containing two ferredoxin sequences joined to one cytochrome c3 sequence, had been isolated, suggesting the possibility of more than one cross-link per covalent complex. All these results led to the identification of heme 4 of cytochrome c3 as the site of interaction for the ferredoxin I. This study confirms the proposal that could be deduced from the hypothetical structure of the complex built by computer graphics modelling (Cambillau, C., Frey, M., Mosse, J., Guerlesquin, F. and Bruschi, M. (1988) Proteins: struct., funct. genet. 4, 63-70).  相似文献   

8.
Horse heart cytochrome c was progressively maleylated, and fractions containing increasing numbers of modified lysines were obtained. The 695 nm band was present in derivatives containing up to 14 maleylated residues. Circular dichroic spectra showed minor changes beginning with 8 substituted lysines; in derivatives with 14 or more maleylated lysines, circular dichroism indicated total disruption of the native conformation. The ionic strength dependence of the measured oxidation reduction potentials and second order rate constants of reduction with ascorbate varied as expected from application of Debye-Huckel theory to the differently charged derivatives. The thermodynamic oxidation-reduction potentials decreased with the increase in the number of negatively charged groups, in a manner similar to that observed for simple iron complexes.  相似文献   

9.
Conformation and activity of delta-lysin and its analogs   总被引:1,自引:0,他引:1  
Dhople VM  Nagaraj R 《Peptides》2005,26(2):217-225
Delta-Lysin is a 26-residue hemolytic peptide secreted by Staphylococcus aureus. Unlike the bee venom peptide melittin, delta-lysin does not exhibit antibacterial activity. We have synthesized delta-lysin and several analogs wherein the N-terminal residues of the toxin were sequentially deleted. The toxin has three aspartic acids, four lysines and no prolines. Analogs were also generated in which all the aspartic acids were replaced with lysines. A proline residue was introduced in the native sequences as well as in the analogs where aspartic acids were replaced with lysines. We observed that 20- and 22-residue peptides corresponding to residues 7-26 and 5-26 of delta-lysin, respectively, had greater hemolytic activity than the parent peptide. These shorter peptides, unlike delta-lysin, did not self-associate to adopt alpha-helical conformation in water, at lytic concentrations. Introduction of proline or substitution of aspartic acids by lysines resulted in loss in propensity to adopt helical conformation in water. When proline was introduced in the peptides corresponding to the native toxin sequence, loss of hemolytic activity was observed. Substitution of all the aspartic acids with lysines resulted in enhanced hemolytic activity in all the analogs. However, when both proline and aspartic acid to lysine changes were made, only antibacterial activity was observed in the shorter peptides. Our investigations on delta-lysin and its analogs provide insights into the positioning of anionic, cationic residues and proline in determining hemolytic and antibacterial activities.  相似文献   

10.
All the lysines of horse heart cytochrome c were maleylated yielding a low spin product. At room temperature and low salt concentration, this product lacked the 695 nm absorption band and showed tryptophan fluorescence and circular dichroic spectra typical of denatured cytochrome c. The 695 nm band and the native tryptophan fluorescence and circular dichroic spectra were restored by addition of salts, their effectiveness being dependent on the charge of the cation. On low salt concentration, the 695 nm band was also restored by lowering the temperature. Studies of the temperature dependence of the 695 nm band indicate that the thermal denaturation of maleylated cytochrome c occurs at temperatures 60-70 degrees C lower than in the native protein. This implies a destabilization of the native conformation by 5.6 kcal/mol; a similar value is evidenced by comparative urea denaturation studies on the native and modified proteins. The results confirm the assumption that the native conformation of cytochrome c is mostly determined by interactions involving internal residues.  相似文献   

11.
The preparation, purification and characterization of the three singly, three doubly and one triply substituted derivatives of cytochrome c modified by pyridoxal phosphate (PLP) at lysine residues are reported. The PLP positions in PLP derivatives were determined by the amino acid analysis and sequence of PLP peptides. The results identified the lysine at position 86 in one of the singly substituted, lysine 79 in the other singly substituted and lysines 86 and 79 in the third doubly substituted cytochrome c derivatives. The area surrounding phenylalanine 82 forms the predominant PLP binding site on the cytochrome c molecule. The visible, CD and proton NMR spectra, the full intensity of the conformation-sensitive 695 nm band and the oxidation-reduction properties provide evidence to confirm the conclusion that singly and doubly substituted PLP cytochromes c retain the native conformation. The ability to restore both succinate and ascorbate/TMPD oxidation in cytochrome c-depleted mitochondria decreases in the order: native cytochrome c greater than PLP-Lys-79-cytochrome c greater than PLP-Lys-86-cytochrome c greater than PLP-Lys-79,86-cytochrome c greater than triply substituted derivative.  相似文献   

12.
Interactions of wild-type and Tyr83 mutant (Y83F, Y83S, Y83L, and Y83H) plastocyanins (PCs) with lysine peptides as models for the PC interacting site of cytochrome f have been studied by absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopies and electrochemical measurements. The spectral and electrochemical properties of PCs corresponded well with each other; species having a longer wavelength maximum for the S(Cys) pi --> Cu 3d(x)()()2(-)(y)()()2 charge transfer (CT) band observed around 600 nm and a stronger intensity for the 460-nm absorption band exhibited stronger intensities for the positive Met --> Cu 3d(x)()()2(-)(y)()()2 and negative His pi(1) --> Cu 3d(x)()()2(-)(y)()()2 circular dichroism (CD) bands at about 420 and 470 nm, respectively, a lower average nu(Cu)(-)(S) frequency, a smaller |A( parallel)| EPR parameter, and a higher redox potential, properties all related to a weaker Cu-S(Cys) bond and a more tetrahedral planar geometry for the Cu site. Similarly, on oligolysine binding to wild-type and several Tyr83 mutant PCs, a longer absorption maximum for the 600-nm CT band, a stronger intensity for the 460-nm absorption band, stronger 420-nm positive and 470-nm negative CD bands, and a lower average nu(Cu)(-)(S) frequency were observed, suggesting that PC assumes a slight more tetrahedral geometry on binding of oligolysine. Since changes were observed for both wild-type and Tyr83 mutant PCs, the structural change due to binding of oligolysine to PC may not be transmitted through the path of Tyr83-Cys84-copper by a cation-pi interaction which is proposed for electron transfer.  相似文献   

13.
J Y Chang 《Biochemistry》1991,30(27):6656-6661
The C-terminal peptide of a hirudin acts as an anticoagulant by binding specifically to a noncatalytic (fibrinogen recognition) site of thrombin. This binding has been shown to shield five spatially distant lysines of the thrombin B-chain (Lys21, Lys65, Lys77, Lys106, and Lys107). It was also demonstrated that modification of the sequence of the hirudin C-terminal peptide invariably diminished its anticoagulant activity. The major object of this study is to investigate how the decreased activity of the modified hirudin C-terminal peptide is reflected by the change of its binding properties to these five lysines of thrombin. A synthetic peptide representing the last 12 C-terminal amino acids of hirudin (Hir54-65) was (1) truncated from both its N-terminal and its C-terminal ends, or (2) substituted with Gly along residues 57-62, or (3) chemically modified to add (sulfation at Tyr63) or abolish (Asp and Glu modification with carbodiimide/glycinamide) its negatively charged side chains. The binding characteristics of these peptides to thrombin were investigated by chemical methods, and their corresponding anticoagulant activities were studied. Our results demonstrated the following: (1) the anticoagulant activities of hirudin C-terminal peptides were quantitatively related to their abilities to shield the five identified lysines of thrombin. The most potent peptide was sulfated Hir54-65 (S-Hir54-65) with an average binding affinity to the five lysines of 120 nM. A heptapeptide (Hir54-60) also displayed anticoagulant activity and thrombin binding ability at micromolar concentrations. (2) All active hirudin C-terminal peptides regardless of their sizes and potencies were shown to be capable of shielding the five lysines of thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Monoclonal antibodies (MAbs) were prepared against native cytochrome f (cyt f) isolated from turnip leaves. The two MAbs obtained, designated MAb-JB2 and MAb-ED4, were Western blot positive to purified turnip cytochrome f and also reacted with inside-out (ISO) but not right-side-out (RSO) spinach thylakoid membranes. MAb-ED4 reacted with a covalent adduct formed by crosslinking cyt f and plastocyanin (PC), whereas MAb-JB2 did not. In contrast, MAb-JB2 reacted with the isolated cyt b6/f complex but MAb-ED4 did not. These results indicate that MAb-JB2 binds to cyt f at or near the PC binding site on f, whereas MAb-ED4 binds to a portion of cyt f which is not exposed in the cyt b6/f complex. The location of the epitopes in the primary sequence of cyt f was determined by trypsin hydrolysis, HPLC separation of tryptic peptides, and ELISA identification of the purified peptides. The molecular weights of the purified peptides, determined by gel exclusion chromatography, were found to be 5040 and 3130 Da for MAb-JB2 and MAb-ED4, respectively. Amino acid sequencing showed that the first eight amino acids of the MAb-ED4 positive peptide were L-D-Q-P-L-T-S-N. These results suggest that the 3130-Da peptide has 28 amino acids extending from Leu 223 to Arg 250. This peptide is located on the N-terminal (lumen) side of the postulated membrane-spanning sequence. The first eight amino acids of the MAb-JB2-positive peptide were N-I-L-V-I-G-P-V. This sequence and the peptide molecular weight indicate that the epitope for MAb-JB2 is located within a 44-amino acid peptide extending from Asn 111 to Arg 154.  相似文献   

15.
Monoclonal antibody 57P, which was raised against tobacco mosaic virus protein, cross-reacts with a peptide corresponding to residues 134-146 of this protein. Previous studies using peptide variants suggested that the peptide in the antibody combining site adopts a helical configuration that mimics the structure in the protein. In this study, we carried out a detailed comparison of Fab-peptide and Fab-protein interactions. The same five amino acid substitutions were introduced in the peptide (residues 134-151) and the parent protein, and the effect of these substitutions on antibody binding parameters have been measured with a Biacore instrument. Fabs that recognize epitopes located away from the site of mutations were used as indirect probes for the conformational integrity of protein antigens. Their interaction kinetics with all proteins were similar, suggesting that the substitutions had no drastic effect on their conformation. The five substitutions introduced in the peptide and the protein had minor effects on association rate constants (ka) and significant effects on dissociation rate constants (kd) of the antigen-Fab 57P interactions. In four out of five cases, the effect on binding affinity of the substitutions was identical when the epitope was presented in the form of a peptide or a protein antigen, indicating that antibody binding specifity was not affected by epitope presentation. However, ka values were about 10 times larger and kd values about 5 times larger for the peptide-Fab compared to the protein-Fab interaction, suggesting a different binding mechanism. Circular dichroism measurements performed for three of the peptides showed that they were mainly lacking structure in solution. Differences in conformational properties of the peptide and protein antigens in solution and/or in the paratope could explain differences in binding kinetics. Our results demonstrate that the peptides were able to mimic correctly some but not all properties of the protein-Fab 57P interaction and highlight the importance of quantitative analysis of both equilibrium and kinetic binding parameters in the design of synthetic vaccines and drugs.  相似文献   

16.
Interaction of anions with the active site of carboxypeptidase A   总被引:1,自引:0,他引:1  
Studies of azide inhibition of peptide hydrolysis catalyzed by cobalt(II) carboxypeptidase A identify two anion binding sites. Azide binding to the first site (KI = 35 mM) inhibits peptide hydrolysis in a partial competitive mode while binding at the second site (KI = 1.5 M) results in competitive inhibition. The cobalt electronic absorption spectrum is insensitive to azide binding at the first site but shows marked changes upon azide binding to the second site. Thus, azide elicits a spectral change with new lambda max (epsilon M) values of 590 (330) and 540 nm (190) and a KD of 1.4 M, equal to the second kinetic KI value for the cobalt enzyme, indicating that anion binding at the weaker site involves an interaction with the active-site metal. Remarkably, in the presence of the C-terminal products of peptide or ester hydrolysis or carboxylate inhibitor analogues, anion (e.g., azide, cyanate, and thiocyanate) binding is strongly synergistic; thus, KD for azide decreases to 4 mM in the presence of L-phenylalanine. These ternary complexes have characteristic absorption, CD, MCD, and EPR spectra. The absorption spectra of azide/carboxylate inhibitor ternary complexes with Co(II)CPD display a near-UV band between 305 and 310 nm with epsilon M values around 900-1250 M-1 cm-1. The lambda max values are close to the those of the charge-transfer band of an aquo Co(II)-azide complex (310 nm), consistent with the presence of a metal azide bond in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have synthesized four oligopeptides that are structural analogues of a low-affinity Ca2+-specific binding site (site II) of rabbit skeletal troponin C. One analogue (peptide 3) was a dodecapeptide with a sequence corresponding to the 12-residue Ca2+-binding loop (residues 63-74 in troponin C), two (peptides 4 and 5) were 23-residue in length, corresponding to residues 52-74 of the protein, and the fourth (peptide 6) was a 25-residue peptide corresponding to residues 50-74. All four peptides had one amino acid substitution within the 12-residue binding loop in which phenylalanine at position 10 was replaced by tyrosine to provide a marker for spectroscopic studies. In addition, peptides 3 and 4 each had a second substitution within the binding loop where glycine at position 6 was replaced by alanine. The second substitution was motivated by the conservation of glycine at the position in the Ca2+-binding loops of all four Ca2+-binding sites in troponin C. The peptides were characterized by their intrinsic fluorescence, ability to enhance the emission of bound Tb3+, affinity for Ca2+ and Tb3+, and circular dichroism. The affinity for Ca2+ was in the range 10-10(2) M-1, and the affinity for Tb3+ was in the range 10(4)-10(5) M-1. The binding constants of the longer peptides were several-fold larger than that of the dodecapeptide. With peptides 4 and 5, substitution of glycine by alanine at position 6 within the 12-residue loop decreased the affinity for Ca2+ by a factor of four, but had little effect on the affinity for Tb3+. However, the mean residue ellipticity of peptide 4 was substantially higher than that of peptide 5. Since peptide 4 differs from peptide 5 only in the substitution of glycine at position 6 in the loop segment, the conservation of glycine at that position may serve a role in providing a suitable secondary structure of the binding sites for interaction with troponin I. Peptides 4 and 6, when present in a large excess, mimic troponin C in regulating fully reconstituted actomyosin ATPase by showing partial calcium sensitivity and activation of the ATPase. Since these peptides are the smallest peptides containing the Ca2+-binding loop of site II, their biological activity suggests that a Ca2+-dependent binding site of troponin C for troponin I could be as short as the segment comprising residues 52-62.  相似文献   

18.
Titration of NADPH-cytochrome P-450 reductase with a fluorigenic maleimide suggests that approximately four cysteines are initially accessible and in close proximity to four tryptophans. Perturbation of the cysteines and/or tryptophans results in concomitant decreases in enzymic activity. These cysteines were correlated with functional components by binding studies and subsequent tryptic peptide mapping on the acid mobile phase-reverse phase HPLC. Adenine nucleotides and cytochrome c block labelling of the more hydrophilic peptides, while detergents facilitate labelling of the more hydrophobic peptides. The more hydrophobic peptides contain the microsomal binding site of cytochrome P-450. Removal of the prosthetic flavins exposes more cysteines in the more hydrophilic and hydrophobic regions of the peptide map, associating the former with FAD and the latter with FMN binding sites.  相似文献   

19.
The characteristic absorption spectra of aromatic amino acids between 240 and 310 nm were used to identify tryptophan, tyrosine, and phenylalanine-containing peptides. In acidic solution, the absorption spectra of these amino acids exhibit minima or maxima at 255, 270, and 286 nm. Based on these characteristics, the content of the aromatic amino acid in peptide can be estimated. For this study, 2 nmol of tryptic peptides from human apolipoprotein A-1 was separated by high-performance liquid chromatography using a reverse-phase column. The peptide fragments were monitored by a photodiode-array spectrophotometer. This new approach offers a rapid, simple, sensitive, and direct identification of peptides containing aromatic amino acids. Those containing Trp, which may be of interest for DNA sequencing and important in sequence analysis of proteins, can be selectively purified using this technique.  相似文献   

20.
The structures formed by peptide models of the N-terminal domain of the nucleolar protein nucleolin were studied by CD and nmr. The sequences of the peptides are based on the putative nucleic acid binding sequence motif TPAKK: The peptides TP1 and TP2 have the sequence acetyl-G(ATPAKKAA)nG-amide, with n = 1 and 2, respectively. CD measurements indicate structural changes in both peptides when the lysine side chains are uncharged by increasing the pH or acetylation of the side-chain amines. When trifluoroethanol (TFE) is added, more extensive structural changes are observed, resembling helical structure based on nmr nuclear Overhauser effect (NOE) and Cα proton chemical shift changes, and CD spectra. The structure formed in 0.5M NaClO4 as observed by nmr is similar to that when the lysine side chains are acetylated, due presumably to interactions of perchlorate ion with side-chain charges on lysines. The helical structure observed in TPAKK motifs may be stabilized via N-capping interactions involving threonine. The structures observed in TFE suggest that the Thr-Pro sequence initiates short helical segments in TPAKK motifs, and these helical structures might interact with nucleic acids, presumably via interactions between lysines and threonines of nucleolin. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号