首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
There are two strains of MDCK cells, MDCK I and II. MDCK I cells show much higher transepithelial electric resistance (TER) than MDCK II cells, although they bear similar numbers of tight junction (TJ) strands. We examined the expression pattern of claudins, the major components of TJ strands, in these cells: claudin-1 and -4 were expressed both in MDCK I and II cells, whereas the expression of claudin-2 was restricted to MDCK II cells. The dog claudin-2 cDNA was then introduced into MDCK I cells to mimic the claudin expression pattern of MDCK II cells. Interestingly, the TER values of MDCK I clones stably expressing claudin-2 (dCL2-MDCK I) fell to the levels of MDCK II cells (>20-fold decrease). In contrast, when dog claudin-3 was introduced into MDCK I cells, no change was detected in their TER. Similar results were obtained in mouse epithelial cells, Eph4. Morphometric analyses identified no significant differences in the density of TJs or in the number of TJ strands between dCL2-MDCK I and control MDCK I cells. These findings indicated that the addition of claudin-2 markedly decreased the tightness of individual claudin-1/4-based TJ strands, leading to the speculation that the combination and mixing ratios of claudin species determine the barrier properties of individual TJ strands.  相似文献   

2.
Claudins are one of the transmembrane proteins found at tight junctions (TJs); they constitute the backbone of TJ strands and comprise a multigene family. Claudins share a YV sequence at the COOH-termini, which is considered to be a ZO-binding motif. Overexpression of claudin-15 (15CL) or claudin-15 tagged with enhanced green fluorescent protein at the NH2-terminus (EGFP-15CL) induced aberrant strands in MDCK II cells, even though claudin-15 has the ZO-binding motif. Morphometric analysis by freeze-fracture electron microscopy revealed that the mean number of apical TJ strands increased by 47% in EGFP-1CL-expressing cells, 21% in EGFP-15CL-expressing cells, and 28% in 15CL-expressing cells. The number of free-ended apical strands increased remarkably in EGFP-15CL- and 15CL-expressing cells, but not in EGFP-1CL-expressing cells. When MDCK cells expressing EGFP-1CL, EGFP-15CL or 15CL were co-cultured with parent MDCK cells, which express claudin-1 but not claudin-15, EGFP-15CL and 15CL could not be concentrated at the apical junctional region between the heterotypic cells, though EGFP-1CL could. These results suggest that not only binding to ZO-1, but also head-to-head compatibility between claudin species, is involved in organizing claudin proteins at the apical junctional region.  相似文献   

3.
Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.  相似文献   

4.
To investigate the formation mechanism of tight junctions (TJs), we constructed three claudin-1 mutants which varied in their COOH-termini and expressed them in MDCK cells under the control of doxycycline. The differences between these constructs are that a putative ZO-1 binding sequence (KDYV) at the COOH-terminus of claudin-1 was deleted (DeltaCmyc) or present (1CLmyc and DeltaCmycYV), or that a myc-epitope was added at the COOH-terminus (1CLmyc and DeltaCmyc) or inserted just before the KDYV sequence (DeltaCmycYV). All three constructs caused the formation of aberrant TJ strands along the lateral plasma membranes. However, when their expression levels were reduced by adding 0.2 ng/ml doxycycline, they were located at apical TJs and colocalized with ZO-1, even in the KDYV-deleted construct. These results suggest that, although the addition of the myc-epitope at or near the COOH-terminus of claudin-1 interfered with the binding to ZO-1 and induced aberrant TJ strand formation, endogenous claudins which could bind to ZO-1 might recruit these deformed claudin-1s expressed at a low level to apical TJs. A calcium switch assay revealed that claudin-1 was transported to cadherin-based cell-cell contacts where ZO-1 had already accumulated, and was then concentrated at apical TJs together with ZO-1. Crosslinking between claudin-1 and the perijunctional actin ring through ZO-1 may be necessary for TJ strands to be localized or retained at apical TJs.  相似文献   

5.
6.
7.
Tight junctions (TJs) in endothelial cells are thought to determine vascular permeability. Recently, claudin-1 to -15 were identified as major components of TJ strands. Among these, claudin-5 (also called transmembrane protein deleted in velo-cardio-facial syndrome [TMVCF]) was expressed ubiquitously, even in organs lacking epithelial tissues, suggesting the possible involvement of this claudin species in endothelial TJs. We then obtained a claudin-6-specific polyclonal antibody and a polyclonal antibody that recognized both claudin-5/TMVCF and claudin-6. In the brain and lung, immunofluorescence microscopy with these polyclonal antibodies showed that claudin-5/TMVCF was exclusively concentrated at cell-cell borders of endothelial cells of all segments of blood vessels, but not at those of epithelial cells. Immunoreplica electron microscopy revealed that claudin-5/TMVCF was a component of TJ strands. In contrast, in the kidney, the claudin-5/TMVCF signal was restricted to endothelial cells of arteries, but was undetectable in those of veins and capillaries. In addition, in all other tissues we examined, claudin-5/TMVCF was specifically detected in endothelial cells of some segments of blood vessels, but not in epithelial cells. Furthermore, when claudin-5/TMVCF cDNA was introduced into mouse L fibroblasts, TJ strands were reconstituted that resembled those in endothelial cells in vivo, i.e., the extracellular face-associated TJs. These findings indicated that claudin-5/TMVCF is an endothelial cell-specific component of TJ strands.  相似文献   

8.
In tight junctions (TJs), TJ strands are associated laterally with those of adjacent cells to form paired strands to eliminate the extracellular space. Claudin-1 and -2, integral membrane proteins of TJs, reconstitute paired TJ strands when transfected into L fibroblasts. Claudins comprise a multigene family and more than two distinct claudins are coexpressed in single cells, raising the questions of whether heterogeneous claudins form heteromeric TJ strands and whether claudins interact between each of the paired strands in a heterophilic manner. To answer these questions, we cotransfected two of claudin-1, -2, and -3 into L cells, and detected their coconcentration at cell-cell borders as elaborate networks. Immunoreplica EM confirmed that distinct claudins were coincorporated into individual TJ strands. Next, two L transfectants singly expressing claudin-1, -2, or -3 were cocultured and we found that claudin-3 strands laterally associated with claudin-1 and -2 strands to form paired strands, whereas claudin-1 strands did not interact with claudin-2 strands. We concluded that distinct species of claudins can interact within and between TJ strands, except in some combinations. This mode of assembly of claudins could increase the diversity of the structure and functions of TJ strands.  相似文献   

9.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

10.
Members of the newly identified claudin gene family constitute tight junction (TJ) strands, which play a pivotal role in compartmentalization in multicellular organisms. We identified oligodendrocyte-specific protein (OSP) as claudin-11, a new claudin family member, due to its sequence similarity to claudins as well as its ability to form TJ strands in transfected fibroblasts. Claudin-11/OSP mRNA was expressed in the brain and testis. Immunofluorescence microscopy with anti-claudin-11/OSP polyclonal antibody (pAb) and anti-neurofilament mAb revealed that in the brain claudin-11/OSP-positive linear structures run in a gentle spiral around neurofilament-positive axons. At the electron microscopic level, these linear structures were identified as the so-called interlamellar strands in myelin sheaths of oligodendrocytes. In testis, well-developed TJ strands of Sertoli cells were specifically labeled with anti-claudin-11/OSP pAb both at immunofluorescence and electron microscopic levels. These findings indicated that the interlamellar strands of oligodendrocyte myelin sheaths can be regarded as a variant of TJ strands found in many other epithelial cells, and that these strands share a specific claudin species, claudin-11/OSP, with those in Sertoli cells to create and maintain the repeated compartments around axons by oligodendrocytes.  相似文献   

11.
In mouse testis, claudin-11 is responsible for the formation of specific parallel TJ strands of the blood–testis barrier (BTB). Concerning the human BTB, there is no information about the transmembrane TJ proteins. We recently demonstrated the loss of functional integrity of the BTB in testicular intraepithelial neoplasia (TIN), associated with a dislocation of the peripheral TJ proteins ZO-1 and ZO-2. Here, we determined the expression and distribution of claudin-11 at the human BTB in seminiferous tubules with normal spermatogenesis (NSP) and TIN. Immunostaining of claudin-11 revealed intense signals at the basal BTB region in seminiferous epithelium with NSP. Within TIN tubules, claudin-11 immunostaining became diffuse and cytoplasmic. Double immunogold labeling demonstrated a co-localization of claudin-11 and ZO-1 at the inter-Sertoli cell junctions. Real-time RT-PCR of laser microdissected tubules showed an up-regulation of claudin-11 mRNA in TIN. Additionally, increased claudin-11 protein was observed by Western blot. We conclude that claudin-11 constitutes a TJ protein at the human BTB. In TIN tubules, claudin-11 is up-regulated and dislocated from the BTB. Therefore, the disruption of the BTB is related to a dysfunction of claudin-11 and not to a failure of its expression.  相似文献   

12.
Lee NP  Tong MK  Leung PP  Chan VW  Leung S  Tam PC  Chan KW  Lee KF  Yeung WS  Luk JM 《FEBS letters》2006,580(3):923-931
Tight junction (TJ) constitutes the barrier by controlling the passage of ions and molecules via paracellular pathway and the movement of proteins and lipids between apical and basolateral domains of the plasma membrane. Claudins, occludin, and junctional adhesion molecules are the major three transmembrane proteins at TJ. This study focuses a newly identified mammalian TJ gene, claudin-19, in kidneys. Mouse claudin-19 composes of 224 amino acids and shares 98.2% and 95% amino acid homology with rat and human, respectively; the most evolutionary-related claudins are claudin-1 and -7, which share approximately 75% DNA sequence homology with claudin-19. Claudin-19 is abundantly expressed in the mouse and rat kidneys among the organs examined by Northern blots, and to a much less extent, also found in brain by RT-PCR. Claudin-19 and zonula occludens-1 (ZO-1) are localized at junctional regions of Madin-Darby canine kidney (MDCK) cells by immunofluorescent microscopy. In addition, ZO-1 is found in the claudin-19-associated protein complexes in MDCK cells by co-immunoprecipitation. Using aquaporin-1 and aquaporin-2 antibodies as markers for different renal segment, strong expression of claudin-19 was observed in distal tubules of the cortex as well as in the collecting ducts of the medulla. To less extent, claudin-19 is also present in the proximal tubules (cortex) and in the loop of Henle (medulla). Furthermore, intense claudin-19 immunoreactivity is found co-localized with the ZO-1 in kidneys from postnatal day 15, day 45, and adult rats and mice. Similar localizations of claudin-19 and ZO-1 are also observed in human kidneys. Since these renal segments are mainly for controlling the paracellular cation transport, it is suggested that claudin-19 may participate in these processes. In human polycystic kidneys, decreased expression and dyslocalization of claudin-19 are noticed, suggesting a possible correlation between claudin-19 and renal disorders. Taken together, claudin-19 is a claudin isoform that is highly and specifically expressed in renal tubules with a putative role in TJ homeostasis in renal physiology.  相似文献   

13.
Infection of intestinal epithelial cells with enteropathogenic Escherichia coli (EPEC) disrupts tight junction (TJ) architecture and barrier function. The aim of this study was to determine the impact of EPEC on TJ protein interactions and localization. Human intestinal epithelial cells (T84) were infected for 1, 3 or 6 h with EPEC. To probe the TJ protein-protein interactions, co-immunoprecipitations were performed. The associations between ZO-1, occludin and claudin-1 progressively decreased after infection. Corresponding morphological changes were analysed by immunofluorescence confocal microscopy. Tight junction proteins progressively lost their apically restricted localization. Freeze-fracture electron microscopy revealed the appearance of aberrant strands throughout the lateral membrane that contained claudin-1 and occludin as determined by immunogold labelling. These structural alterations were accompanied by a loss of barrier function. Mutation of the gene encoding EspF, important in the disruption of TJs by EPEC, prevented the disruption of TJs. Tight junction structure normalized following eradication of EPEC with gentamicin and overnight recovery. This is the first demonstration that a microbial pathogen can cause aberrant TJ strands in the lateral membrane of host cells. We speculate that the disruption of integral and cytoplasmic TJ protein interactions following EPEC infection allows TJ strands to form or diffuse into the lateral plasma membrane.  相似文献   

14.
Extensive studies have identified a large number of the molecular components of cellular tight junctions (TJ), including the claudins, occludin and ZO-1/2, and also many of the physical interactions between these molecules. However, the regulatory mechanisms of TJ formation are as yet poorly understood. In HaCaT, a human epidermal keratinocyte cell line, TJ were newly formed when cells were cultured in the presence of SP600125, a JNK inhibitor. Moreover, claudin-4 was newly phosphorylated during this process. We found that claudin-4 contains a sequence which is phosphorylated by atypical PKC (aPKC). Kinase assay demonstrated that the 195th serine (serine195) of mouse claudin-4 was phosphorylated by aPKC in vitro. The 194th serine (serine194) of human claudin-4 corresponding to serine195 of mouse claudin-4 was phosphorylated in HaCaT cells when TJ were formed, and the phosphorylated claudin-4 co-localized with ZO-1 at TJ. aPKC activity was required for both the claudin-4 phosphorylation and TJ formation in HaCaT. Furthermore, overexpression of mutant claudin-4 protein S195A, which was not phosphorylated by aPKC, perturbed the TJ formation mediated by SP600125. These findings suggest that aPKC regulates TJ formation through the phosphorylation of claudin-4.  相似文献   

15.
We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier.  相似文献   

16.
Glucocorticoids and prolactin (PRL) have a direct effect on the formation and maintenance of tight junctions (TJs) in cultured endothelial and mammary gland epithelial cells. In this work, we investigated the effect of a synthetic glucocorticoid dexamethasone (DEX) and PRL on the paracellular barrier function in MDCK renal epithelial cells. DEX (4 microM)+PRL (2 microg/ml) and DEX alone increased significantly the transepithelial electrical resistance after chronic treatment (4 days) of confluent MDCK monolayers or after 24 h treatment of subconfluent monolayers. Immunoblotting and immunocytochemistry revealed no changes in the expression and distribution of TJ-associated proteins occludin, ZO-1 and claudin-1 in confluent monolayers after hormone addition. However, a marked increase in junctional content for occludin and ZO-1 with no changes in their total expression was observed in subconfluent MDCK monolayers 24 h exposed to DEX or DEX+PRL. No change in cell proliferation/growth was detected at subconfluent conditions following hormone treatment. An increase in the total number of viable cells was observed only in confluent MDCK monolayers after exposure to DEX+PRL suggesting that the main effect of these hormones on already established barrier may be associated with the inhibition of cell death. In conclusion, our data suggest that these hormones (specially dexamethasone) have an effect on TJ structure and function only during the formation of MDCK epithelial barrier by probably modulating the localization, stability or assembly of TJ proteins to membrane sites of intercellular contact.  相似文献   

17.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

18.
Natural and synthetic polycationic proteins, such as protamine, have been used to reproduce the tissue injury and changes in epithelial permeability caused by positively charged substances released by polymorphonuclear cells during inflammation. Protamine has diverse and often conflicting effects on epithelial permeability. The effects of this polycation on the distribution and expression of tight junction (TJ)-associated proteins have not yet been investigated. In this work, we examined the influence of protamine on paracellular barrier function and TJ structure using two strains of the epithelial Madin-Darby canine kidney (MDCK) cell line that differed in their TJ properties ("tight" TJ-strain I and "leaky" TJ-strain II). Protamine induced concentration-, time- and strain-dependent alterations in transepithelial electrical resistance (Rt) only when applied to apical or apical+basolateral monolayer surfaces, indicating a polarity of action. In MDCK II cells, protamine (50 microg/ml) caused a significant increase in Rt that returned to control values after 2 h. However, the treatment of this MDCK strain with a higher concentration of protamine (250 microg/ml) significantly decreased the Rt after 30 min. In contrast, treated MDCK I monolayers showed a significant decrease in Rt after apical treatment with protamine at both concentrations. The protamine-induced decrease in Rt was paralleled by an increase in the phenol red basal-to-apical flux in both MDCK strains, suggesting disruption of the paracellular barrier. Marked changes in cytoskeletal F-actin distribution/polymerization and a significant reduction in the junctional expression of the tight junctional proteins occludin and claudin-1 but subtle alterations in ZO-1 were observed following protamine-elicited paracellular barrier disruption. In conclusion, protamine induces alterations in the epithelial barrier function of MDCK monolayers that may involve the cytoskeleton and TJ-associated proteins. The various actions of protamine on epithelial function may reflect different degrees of interaction of protamine with the plasma membrane and different intracellular processes triggered by this polycation.  相似文献   

19.
Hasegawa  Tatsuya  Mizugaki  Ami  Inoue  Yoshiko  Kato  Hiroyuki  Murakami  Hitoshi 《Amino acids》2021,53(7):1021-1032

Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号