首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Summary Cell suspensions were established from calluses with embryogenic structures obtained from young male flowers of the hybrid cultivar FHIA-21 (Musa sp. AAAB group). Different concentrations of 2,4-dichlorophenoxyacetic acid tested produced similar tendencies in all cases. In the subsequent phase, these cell suspensions then formed somatic embryos with best results at a cell density of 20%, forming 799.5±2.5 embryos from only 200 μl of cell suspension. However, germination was best with embryos produced at 15% cell density. Plant recovery frequencies were as high as 81.5% in this case. Regenerated plants were taken to the acclimatization phase for conversion and future evaluation on somaclonal variation.  相似文献   

2.
Axillary buds (2 mm) from 3-year-old Carica pubescens Lenné et Koch (highland papaya) fruit-bearing plants grown in the greenhouse were cultivated in NN-medium supplemented with different growth regulators naphthaleneacetic acid and indoleacetic acid in combination with Zeatin, benzyladenine, Kinetin and thidiazuron. Several responses were observed within 2–3 months; namely, sprouting of the preformed axillary buds, bud branching into multiple shoots, callus formation at the basal end of the explant and somatic embryogenesis in the preformed callus. Somatic embryogenesis was frequent in most of the tested growth regulator combinations, with the exception of thidiazuron which showed no effect. A much higher yield of somatic embryos could be obtained in suspensions. Somatic embryogenesis was enhanced by the occurence of adventive embryogenesis on single embryos as globular embryo clusters. This was observed in cell suspensions initially grown in a WPM-medium with 2,4-dichlorophenoxyacetic acid, or in combination with benzyladenine or zeatin, for 6 days, then maintained in a growth regulator-free medium under continuous agitation (50 RPM) on an orbital shaker for 3 months. Single cells grown in the absence of 2,4-dichlorophenoxyacetic acid did not initiate embryogenesis and de-differentiated into callus. Plantlets were recovered after transfer of mature embryos from cell suspensions into Magenta flasks. In a second subculture, adventitious embryogenesis occurred spontaneously in clusters at the globular embryo stage under the same growth conditions, yielding a high number of embryos. The culture conditions described above allowed initiation of a large number of somatic embryos directly from cell suspensions through adventive somatic embryogenesis and indirectly from callus on axillary buds.Abbreviations 2,4-d dichlorophenoxyacetic acid - CH casein enzymatic hydrolysate - BA benzyladenine - FAA formalin:acetic acid:alcohol - Glu l-glutamine - IAA indoleacetic acid - NAA naphthaleneacetic acid - NN Nitsch and Nitsch-medium (1969) - TDZ thidiazuron - SD standard deviation  相似文献   

3.
Summary Rapidly growing cell suspension cultures of shepherd’s purse (Capsella bursa-pastoris L. Medic.) were established from leaf-derived calli. These suspensions remained unorganized in the presence of 2,4-D, but underwent extensive root organogenesis in a growth regulator-free liquid medium. Attempts to induce direct embryogenesis in liquid cultures were unsuccessful, but numerous embryos were obtained from cells plated onto growth-regulator-free solid medium. These embryos were frequently abnormal, and secondary embryogenesis was problematic for plant recovery but fertile plants were recovered. Viable protoplasts could readily be isolated from these cell suspensions. After 1 wk of culture, protoplast viability was 62%, and 7% of the cells had divided. Embryogenesis was observed from protoplast-derived microcolonies, plated on growth-regulator-free medium. Although these somatic embryos were difficult to root, plants were recovered. New cell suspensions were more recently established, which were only 4 to 6 mo. old when plant regeneration was attempted. Numerous shoots were obtained when these cells were plated onto growth-regulator-free solid media. However, these shoots differed from the embryos previously obtained in that they readily rooted and rapidly developed into plantlets. This system may allow the use of shepherd’s purse as a gene source for introgression of agronomically interesting traits intoBrassica crop species through protoplast manipulation and somatic hybridization.  相似文献   

4.
Summary Somatic embryos of sweet potato have potential as synthetic seeds. The effects of abscisic acid (ABA) (0,0,0.1, 1.0, 10.0 and 50.0 μM) were examined to improve synchrony and proliferation of somatic embryos. Transferring embryos compared to those cultures transferred at day 0. The development of embryos in suspension culture supplemented with ABA was poor. However, when calli proliferation cultures were in gelled medium and pulsed with 0.1 μM ABA for 14 d, the number of somatic embryos increased. Proembryonic masses cultured in mannitol-containing medium (Y=−1.5 MPa) increased embryo development and synchrony of embryo development. Thus, in this work ABA and mannitol have been shown to improve both the total number and the synchrony of sweet potato somatic embryos.  相似文献   

5.
The development of somatic embryos in liquid culture medium has a number of advantages for large-scale propagation of plants. This paper describes an improved system for the mass propagation via somatic embryogenesis of the banana hybrid cultivar FHIA-18 (AAAB). Explants from immature male flowers were used to form high frequency embryogenic tissue, this tissue was then used to establish embryogenic cell suspensions in a basic MS medium plus 1.0 mg l–1 biotin, 100 mg l–1 glutamine, 100 mg l–1 malt extract (Sigma), 1.0 mg l–1 2,4-D and 45 g l–1 sucrose. Secondary multiplication of somatic embryos was achieved in liquid media in rotary shaker and in bioreactors. The number of embryos per litre obtained with 80.0% DO2 and effects of pH were also studied. A high regeneration percentage of plants were obtained (89.3%) in only 1 month of culture, somatic embryos were then placed to germinate in temporary immersion systems and field testing of somaclonal variation.  相似文献   

6.
Somatic embryogenesis from immature male flowers in Musa is only suitable for genotypes with a male bud. Six friable embryogenic cultures were obtained from 28 cultured buds of female flowers of the AAB False Horn Plantains, ‘Curraré’ and ‘Curraré Enano’. Embryogenic suspensions were established from these embryogenic cultures. Somatic embryogenesis was demonstrated histologicaly. Regeneration of plants was obtained either from somatic embryos directly isolated from embryogenic cultures or from suspensions after plating on a semi-solid medium. This study demonstrates that somatic embryogenesis from immature flowers is suitable for genotypes of Musa with or without male buds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
We report, an efficient protocol for plantlet regeneration from the cell suspension cultures of cowpea through somatic embryogenesis. Primary leaf-derived, embryogenic calli initiated in MMS [MS salts (Murashige and Skoog 1962) with B5 (Gamborg et al. 1968) vitamins] medium containing 2,4-Dichlorophenoxyacetic acid (2,4-D), casein hydrolysate (CH), and l-Glutamic acid-5-amide (Gln). Fast-growing embryogenic cell suspensions were established in 0.5 mg l–1 2,4-D, which resulted in the highest recovery of early stages of somatic embryos in liquid MMS medium. Embryo development was asynchronous and strongly influenced by the 2,4-D concentration. Mature monocotyledonary-stage somatic embryos were induced in liquid B5 medium containing 0.1 mg l–1 2,4-D, 20 mg l–1 l-Proline (Pro), 5 M Abscisic acid (ABA), and 2% mannitol. B5 medium was found superior for the maturation of somatic embryos compared to MS and MMS media. The importance of duration (5 d) for effective maturation of somatic embryos is demonstrated. A reduction in the 2,4-D level in suspensions increased the somatic embryo induction and maturation with decreased abnormalities. Sucrose was found to be the best carbon source for callus induction while mannitol for embryo maturation and maltose for embryo germination. Extension of hypocotyls and complete development of plantlet was achieved in half-strength B5 medium supplemented with 3% maltose, 2500 mg l–1 potassium nitrate, and 0.05 mg l–1 thidiazuron (TDZ) with 32% regeneration frequency. Field-established plants were morphologically normal and fertile. This regeneration protocol assures a high frequency of embryo induction, maturation, and plantlet conversion.  相似文献   

8.
We describe the early formation of somatic embryos followed by plant regeneration from protoplasts isolated from an embryogenic wheat cell suspension, which was initiated from small granular (0.2 to 1 mm in size) embryogenic calli. These granular calli formed embryogenic cell suspensions within 20 days in liquid culture, and were selected gradually from young inflorescence-derived nodular embryogenic calli of the winter wheat cv. Kehong 1041. The division frequency of protoplasts was 11 to 16%, and the frequency of differentiation into plants was about 0.001% (number of plants formed divided by the total number of protoplasts plated). About 20% of somatic embryos present in the culture formed directly from protoplast-derived cells within 15 days of cultures.  相似文献   

9.
Summary Efficient plant regeneration systems via somatic embryogenesis have been developed for Acacia farnesiana and Acacia schaffneri [Leguminosae (Mimosoideae)]. The protocol used in this study consisted of placing immature, zygotic embryos of these species in Murashige and Skoog semi-solid basal medium supplemented with 9.05 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.65 μM kinetin to induce callus. Some parts of the callus were used for direct embryo differentiation and others for establishment of cell suspension cultures. In the first case, somatic embryos were produced on semi-solid differentiation media without growth regulators or with abscisic acid (ABA). The higher number of somatic embryos, 345 and 198 embryos per g callus in A. farnesiana and A. schaffneri, respectively was obtained in media without growth regulators, but adding ABA increased the percentage of embryos that reached more advanced differentiation stages. The production of somatic embryos was achieved starting from cell suspensions only when these suspensions were plated into the semi-solid differentiation medium. Somatic embryos germinated on medium containing 217 μM adenine sulfate with efficiencies of 69% in A. farnesiana and 47% in A. schaffneri. Some somatic embryos that developed into plantlets were acclimatized in the greenhouse, and they grew into normal plants.  相似文献   

10.
Summary A method of clonal germplams preservation utilizing dehydrated somatic embryos and cool temperature storage conditions was demonstrated. Somatic embryos of grapevine (Vitis vinifera L) Autumn Seedless and Chardonnay were produced from suspension cultures. After washing twice with sterile water mature somatic embryos were blot-dried and placed on sterile filter paper in an open Petri dish in a laminar flow hood until they reached about 25% of their initial weight. Approximately 300 dried embryos were placed in each sterile 90×15 mm Petri dish, which was tightly sealed with two layers of ParafilmTM. Sealed dishes were stored in the dark at 4°C in a standard refrigerator. Samples of 25–60 individual dehydrated somatic embryos were periodically tested for viability by placing them on solidified MS medium for germination and plant regeneration. After 42 mo. of dehydrated storage, 90% of the somatic embryos regenerated into plants. To further test utility, of this storage method dehydrated embryos stored for 12 and 26 mo. were shipped from Florida to Washington where 75 and 87.5% regenerated into plants, respectively. Cool temperature storage of dehydrated somatic embryos is a simple and inexpensive method of clonal, germplasm preservation when compared to alternatives such as cryopreservation.  相似文献   

11.
Triploid suspensions generally grew more vigorously in modified MS medium with 2,4-D than those of diploids. The embryogenic potential of 26-month-old auxin-dependent suspension cultures depended on the line. Neither triploid nor diploid BOR (Borszczagowski line) were able to produce somatic embryos. Similarly, 12–20-month-old cytokinin-dependent suspensions from the same triploid line were not capable of regeneration. Only aggregates from 26-month-old auxin-dependent suspension of triploid line 603 differentiated into somatic embryos. In contrast, 18-month-old diploid and triploid liquid cultures of meristematic clumps (LMC) of BOR retained their regeneration potential. The ploidy level of triploid and diploid auxin-dependent suspension cultures was stable during the first 8 months. However, the ploidy level of triploids remained stable over 26 months of culture, whereas 66.7% of diploid cultures underwent chromosome doubling. No ploidy changes were observed among plants regenerated from 18-month-old LMC. Our data suggest that loss of embryogenic potential in suspension culture was independent of ploidy level.  相似文献   

12.
13.
Summary Embryogenic cell suspension cultures were established from Triticum aestivum X Leymus angustus F1 hybrids, using compact nodular calli derived from inflorescence segments. Calli originating from leaf segments did not give rise to stable cell suspensions. Growth measurements of the cell suspensions revealed that they continued rapid growth up to 10 days after subculturing. Flow cytometric studies of the cell cycle over a 7 day culture period showed that the majority of cells were in G1 phase while the rest were either in S or G2. During the 7 days of culture, no significant differences in DNA distribution patterns were observed. The cells from suspension cultures produced somatic embryos when they were transferred to different solid media. The embryos germinated and gave rise to plantlets which were successfully rooted and transferred to soil.  相似文献   

14.
The sequence of events in the functional body pattern formation during the somatic embryo development in cowpea suspensions is described under three heads. Early stages of somatic embryogenesis were characterized by both periclinal and anticlinal cell divisions. Differentiation of the protoderm cell layer by periclinal divisions marked the commencement of somatic embryogenesis. The most critical events appear to be the formation of apical meristems, establishment of apical-basal patterns of symmetry, and cellular organization in oblong-stage somatic embryo for the transition to torpedo and cotyledonary-stage somatic embryos. Two different stages of mature embryos showing distinct morphology, classified based on the number of cotyledons and their ability to convert into plantlets, were visualized. Repeated mitotic divisions of the sub-epidermal cell layers marked the induction of proembryogenic mass (PEM) in the embryogenic calli. The first division plane was periclinally-oriented, the second anticlinally-oriented, and the subsequent division planes appeared in any direction, leading to clusters of proembryogenic clumps. Differentiation of the protoderm layer marks the beginning of the structural differentiation in globular stage. Incipient procambium formation is the first sign of somatic embryo transition. Axial elongation of inner isodiametric cells of the globular somatic embryo followed by the change in the growth axis of the procambium is an important event in oblong-stage somatic embryo. Vacuolation in the ground meristem of torpedo-stage embryo begins the process of histodifferentiation. Three major embryonic tissue systems; shoot apical meristem, root apical meristem, and the differentiation of procambial strands, are visible in torpedo-stage somatic embryo. Monocotyledonary-stage somatic embryo induced both the shoot apical meristem and two leaf primordia compared to the ansiocotyledonary somatic embryo.  相似文献   

15.
An improved protocol is described for the large-scale micropropagation of an elite date palm ( Phoenix dactylifera L.) cultivar, Deglet Nour. Clonal plants were regenerated from somatic embryos derived from highly proliferating suspension cultures. Friable embryogenic calli were initiated from both leaf and inflorescence explants. Suspension cultures consisting of pro-embryonic masses were established from calli showing a high competency for somatic embryogenesis. The subculture of suspensions in liquid medium enriched with low amounts of plant growth regulators (1 mg l(-1) 2,4-dichlorophenoxyacetic acid with 300 mg l(-1) charcoal) resulted in the differentiation of large numbers of somatic embryos. The productivity of the cultures increased 20-fold (from 10 to 200 embryos per month per 100 mg fresh weight of embryogenic callus) when embryogenic suspensions were used instead of standard cultures on solid media. The overall production of somatic embryos reached 10,000 units per litre per month. Partial desiccation of the mature somatic embryos, corresponding to a decrease in water content from 90% to 75%, significantly improved germination rates (from 25% to 80%). The cutting back of the cotyledonary leaf was also found to stimulate embryo germination. Flow cytometric analysis showed that the micropropagation protocol followed here did not affect the ploidy level of somatic embryo-derived plantlets.  相似文献   

16.
Direct differentiation of somatic embryos occurs in high-frequency and at high density in response to 1.0 microM TDZ, on different regions-hypocotyl, epicotyl, cotyledonary-node, cotyledons and leaves-of intact seedlings of Azadirachta. One-week-old seedlings on this medium exhibited stress symptoms as visible by the loss of root formation and reduction in the elongation of hypocotyl and epicotyl. Globular somatic embryos were more abundant on hypocotyl, epicotyl, stem tip and leaves. The arrest of embryos at this stage was possibly due to their presence in high density. Well-developed somatic embryos were present on the cotyledons and the cotyledonary-node. These embryos on isolation and transfer to hormone-free medium regenerated readily to form plantlets. The possible role of stress in thidiazuron-induced somatic embryo formation is discussed.  相似文献   

17.
Summary Encapsulated somatic embryos (artificial seeds) and naked (uncoated) somatic embryos of alfalfa (Medicago sativa L.) were planted directly into the field to demonstrate the feasibility of using artificial seeds for direct sowing. Various row coverings that provided protection for the somatic embryos during conversion (plant formation) in the field and encapsulation methods were investigated. The highest conversion obtained in the field was 25% when naked somatic embryos were planted under the protective covering of inverted styrofoam cups. In comparison, 60% conversion was obtained when embryos were planted in potting mix in a growth chamber. Somatic embryos encapsulated by the thin-coat method converted at 23% under cups in the field and 40% in potting mix in the growth chamber. Naked somatic embryos had an average of 13 and 9% conversion in the field under plastic and cloth coverings, respectively, whereas encapsulated embryos converted at 5 and 14%, respectively. Direct-planted embryos (no row covering) converted at 1% in the field. Successful conversion of coated and naked somatic embryos planted in the field supports the concept of artificial seeds serving as a substitute for natural seeds.  相似文献   

18.
Root explants excised from carnation plants maintained in vitro formed off-white, friable calluses after three weeks of culture on Murashige and Skoog (MS) medium supplemented with 1 mg l−1 thidiazuron (TDZ) and 1 mg l−1 α-naphthalaneacetic acid (NAA). These calluses were subsequently transferred to MS basal medium where, after an additional four weeks of culture, approximately 50% of the calluses formed somatic embryos. However, calluses formed on root explants that had been cultured on MS medium supplemented with 2,4-dichlorophenoxyacetic acid did not produce somatic embryos upon transfer to MS basal medium. Somatic embryos developed into plantlets and subsequently were grown to maturity. These results indicate that root explants have a high competence for somatic embryogenesis in carnation. J. Seo and S.W. Kim contributed equally to this work.  相似文献   

19.
The aim of the present work was to study the effect of the developmental stage of the somatic embryos and of the genotype on the genetic transformation of embryogenic lines of European chestnut (Castanea sativa Mill.) and the cryopreservation of the embryogenic lines that are generated. As an initial source of explants in the transformation experiments, it was found that the use of somatic embryos isolated in the globular stage or clumps of 2–3 embryos in globular/heart-shaped stages was more effective (30%) than when embryos at the cotyledonary stage were used (6.7%). All of the seven genotypes tested were transformed, and transformation efficiency was clearly genotype dependent. Three transgenic lines were successfully cryopreserved using the vitrification procedure, and the stable integration of the uidA gene into the transgenic chestnut plants that were regenerated subsequent to cryopreservation was demonstrated.  相似文献   

20.
The cucumber MSC16 mutant was obtained by regeneration from cell cultures of the inbred line B and it is associated with complex mitochondrial genome rearrangements causing DNA deletions and duplications. We compared cell suspensions of cucumber MSC16 and the control wild type line B. MSC16 growth intensity in cell cultures was the same as a control line B. There were differences, however, in ability to undergo somatic embryogenesis. In auxin-dependent cell suspension (ADS) the MSC16 formed abnormal embryos not able to convert into the plantlets, however, 14% of MSC16 somatic embryos were normal after application of the cytokinin-dependent cell suspension (CDS) procedure. There were no differences between MSC16 and wild type line B observed in liquid culture of meristematic clumps (LMC). An electron microscopy revealed long fasciated mitochondria present in MSC16 ADS culture and mitochondria organized in clumps present in MSC16 CDS culture, with a control showing typical mitochondria appearance. An accumulation of large starch grains in chloroplasts appeared in cell cultures of the MSC16. These differences are discussed in the context of MSC16 mutant formation and its unique features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号