首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Systems for easily controlled, conditional induction or repression of gene expression are indispensable tools in fundamental research and industrial-scale biotechnological applications. Both native and rationally designed inducible promoters have been widely used for this purpose. However, inherent regulation modalities or toxic, expensive or inconvenient inducers can impose limitations on their use. Tailored promoters with user-specified regulatory properties would permit sophisticated manipulations of gene expression. Here, we report a generally applicable strategy for the directed evolution of promoter regulation. Specifically, we applied random mutagenesis and a multi-stage flow cytometry screen to isolate mutants of the oxygen-responsive Saccharomyces cerevisiae DAN1 promoter. Two mutants were isolated which were induced under less-stringent anaerobiosis than the wild-type promoter enabling induction of gene expression in yeast fermentations simply by oxygen depletion during cell growth. Moreover, the engineered promoters showed a markedly higher maximal expression than the unmutated DAN1 promoter, under both fastidious anaerobiosis and microaerobisois.  相似文献   

3.
Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways. Here a total of 14 constitutive promoters from S. cerevisiae were cloned and characterized using a green fluorescent protein (GFP) as a reporter in a 2 μ vector pRS426, under varying glucose and oxygen concentrations. The strengths of these promoters varied no more than sixfold in the mean fluorescence intensity of GFP, with promoter TEF1p being the strongest and promoter PGI1p the weakest. As an example of application for these promoters in metabolic engineering, the genes involved in xylan degradation and zeaxanthin biosynthesis were subsequently cloned under the control of promoters with medium to high strength and assembled into a single pathway. The corresponding construct was transformed to a S. cerevisiae strain integrated with a D-xylose utilizing pathway. The resulting strain produced zeaxanthin with a titer of 0.74 ± 0.02 mg/L directly from birchwood xylan.  相似文献   

4.
To construct a highly sensitive detection system for endocrine disruptors, we have compared the activity of promoters with the ALK1, ICL1, RPS7 and TEF1 for heterologous gene in Yarrowia lipolytica. The promoters were introduced into the upstream of lacZ or hERalpha reporter gene, respectively, and the activity was evaluated by beta-galactosidase assay by lacZ or western blot analysis by hERalpha. The expression analysis revealed that the ALK1 and ICL1 promoter were induced by n-decane and by EtOH, respectively. The constitutive promoter of RPS7 and TEF1 showed mostly high level of expression in the presence of glucose and glycerol, respectively. Particularly, the TEF1 promoter showed the highest beta-galactosidase activity and a significant signal by western blotting with the anti-estrogen receptor compared with the other promoters. Moreover, the detection system was constructed with promoters were linked to the upstream of expression vector for hERalpha gene transformed into the Y. lipolytica with a chromosome-integrated lacZ reporter gene under the control of estrogen response elements (EREs). It was indicated that a combination of pTEF1p-hERalpha and CXAU1-2XERE was the most effective system for the E2-dependent induction of the beta-galactosidase activity. This system showed the highest beta-galactosidase activity at 10-6 M E2 and the activity could be detected at even the concentration of 10-10 M E2. As the result, we constructed a strongly sensitive detection system with Y. lipolitica to evaluate recognized/suspected ED chemicals, such as natural/synthetic hormones, pesticides, and commercial chemicals. The results demonstrate the utility, sensitivity and reproducibility of the system for characterizing environmental estrogens.  相似文献   

5.
The recombinant strains of the flavinogenic yeast Candida famata, which contain the DNA fragment consisting of the FMN1 gene (encoding the riboflavin kinase, enzyme that converts riboflavin to flavinmononucleotide) driven by the strong promoters (the regulated RIB1 or constitutive TEF1 promoter) were isolated. Riboflavin kinase activity in the isolated transformants was tested. The 6-8-fold increase of the riboflavin kinase activity was shown in the recombinant strains containing the integrated Debaryomyces hansenii FMN1 gene under the strong constitutive TEF1 promoter. The recombinant strains can be used for the following construction of flavinmononucleotide overproducers.  相似文献   

6.
The extracellular production of a hybrid bacterial β-glucanase using Escherichia coli was studied by using combinations of promoters of varying strength for both a β-glucanase as the target protein and the Kil protein as the releasing factor. Four strains with different combinations of promoter strengths were cultivated in shake-flasks on four different media to assess the cross-influence of promoter and medium in a general manner. Promoters were taken from natural as well as synthetic sequences known to exhibit either weak or strong promoter strength. By far the highest extracellular glucanase activity (>200 U ml−1) was achieved when a strain harbouring the kil gene under control of a strong synthetic stationary-phase promoter and the glucanase gene under control of a strong synthetic constitutive promoter was cultivated on a complex medium mainly composed of casein peptone, yeast extract, and glycerol.  相似文献   

7.
8.
9.
10.
【目的】从高产甘油生产菌株产甘油假丝酵母(Candida glycerinogenes)基因组中克隆了NAD+依赖3-磷酸甘油脱氢酶编码基因(CgGPD),但是该基因及其上游调控序列具体的功能还是未知的。本文研究了CgGPD基因及其上游调控序列的功能。【方法】本文以酿酒酵母(Saccharomyces cerevisiae)及其渗透压敏感型突变株为宿主,构建3种不同的酵母表达载体导入酵母细胞,研究了不同酵母转化子在渗透压胁迫条件下CgGPD基因表达对细胞的耐高渗透压胁迫应答及其细胞的甘油合成能力的影响。【结果】实验结果表明无论是以来源于S. cerevisiae 的TPI启动子还是来源于CgGPD基因的启动子,过量表达CgGPD基因的转化子均能够显著加速葡萄糖消耗速度和提高甘油合成能力,在gpd1/gpd2突变株中表达CgGPD基因能够消除细胞对外界高渗透压的敏感性,同时转化子胞内甘油大量积累。【结论】CgGPD基因在野生型酵母S. cerevisiae W303-1A表达显著提高细胞的甘油合成能力,在gpd/1gpd2突变株中能够互补GPD1基因的功能,CgGPD基因表达受渗透压诱导 调控。  相似文献   

11.
12.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

13.
14.
15.
Utilizing human P-glycoprotein (P-gp), we investigated methods to enhance the heterologous expression of ATP-binding cassette transporters in Saccharomyces cerevisiae. Human multidrug resistance gene MDR1 cDNA was placed in a high-copy 2 mu yeast expression plasmid under the control of the inducible GAL1 promoter or the strong constitutive PMA1 promoter from which P-gp was expressed in functional form. Yeast cells expressing P-gp were valinomycin resistant. Basal ATPase activity of P-gp in yeast membranes was 0. 4-0.7 micromol/mg/min indicating excellent functionality. P-glycoprotein expressed in the protease-deficient strain BJ5457 was found in the plasma membrane and was not N-glycosylated. By use of the PMA1 promoter, P-gp could be expressed at 3% of total membrane protein. The expression level could be further enhanced to 8% when cells were grown in the presence of 10% glycerol as a chemical chaperone. Similarly, glycerol enhanced protein levels of P-gp expressed under control of the GAL1 promoter. Glycerol was demonstrated to enhance posttranslational stability of P-gp. Polyhistidine-tagged P-gp was purified by metal affinity chromatography and reconstituted into proteoliposomes in milligram quantities and its ATPase activity was characterized. Turnover numbers as high as 12 s(-1) were observed. The kinetic parameters K(MgATP)(M), V(max), and drug activation were dependent on the lipid composition of proteoliposomes and pH of the assay and were similar to P-gp purified from mammalian sources. In conclusion, we developed a system for cost-effective, high-yield, heterologous expression of functional P-gp useful in producing large quantities of normal and mutant P-gp forms for structural and mechanistic studies.  相似文献   

16.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

17.
A Gatignol  M Dassain  G Tiraby 《Gene》1990,91(1):35-41
Vectors that confer high levels of phleomycin (Ph) resistance to Saccharomyces cerevisiae have been constructed with the TEF1 and ENO1 promoters, the Tn5 ble gene and the CYC1 terminator. They are able to transform yeast cells grown on rich glucose medium containing a moderate level of Ph (10 micrograms/ml, corresponding to 100-fold the minimal inhibitory concentration). Frequencies of transformation are identical to those obtained with the URA3 marker on a defined medium. A promoter probe vector, based on the same ble marker, enabled us to isolate sequences from chromosomal yeast DNA that had promoter activities. These DNA fragments have been sequenced and those which promote the highest levels of Ph resistance have been found to be either A + T-rich or have a potentially new and more efficient translation start site.  相似文献   

18.
19.
A wide-range yeast vector (CoMed) system has been applied to the comparative assessment of three different yeast platforms for the production of human interleukin-6. A vector equipped with an rRNA gene targeting sequence and an Arxula adeninivorans-derived LEU2 gene was used for simultaneous transformation of auxotrophic A. adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae strains. IL6 was expressed under control of the strong constitutive A. adeninivorans-derived TEF1 promoter, which is functional in all yeast species analyzed so far. Secreted IL-6 was found to be correctly processed from an MFalpha1-IL6 precursor in A. adeninivorans only, whereas N-terminally truncated proteins were observed in H. polymorpha and S. cerevisiae.  相似文献   

20.
The GAL1 promoter is one of the strongest inducible promoters in the yeast Saccharomyces cerevisiae. In order to improve recombinant protein production we have developed a fluorescence based method for screening and evaluating the contribution of various gene deletions to protein expression from the GAL1 promoter. The level of protein synthesis was determined in 28 selected mutant strains simultaneously, by direct measurement of fluorescence in living cells using a microplate reader. The highest, 2.4-fold increase in GFP production was observed in a gal1 mutant strain. Deletion of GAL80 caused a 1.3-fold increase in fluorescence relative to the isogenic strain. GAL3, GAL4 and MTH1 gene deletion completely abrogated GFP synthesis. Growth of gal7, gal10 and gal3 also exhibited reduced fitness in galactose medium. Other genetic perturbations affected the GFP expression level only moderately. The fluorescence based method proved to be useful for screening genes involved in GAL1 promoter regulation and provides insight into more efficient manipulation of the GAL system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号