首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   

2.
Electron microscopic examination of Chinese hamster tissue-culture cells showed that freezing and thawing result in structural alterations, the type and magnitude of which depend on the cooling and warming velocities used. Cells suspended in Hanks balanced salt solution and cooled to −196 °C at rates exceeding the survival optimum exhibit different patterns and extents of ultrastructural alterations than do cells cooled or warmed at rates lower than optimum. Even though the addition of 0.4 M dimethyl sulfoxide confers some protection, in terms of survival, it does not prevent structural alterations. The types of alterations, however, differ from those found in cells frozen in Hanks alone. Freeze-thaw treatments producing similar percentages of cell survival do not necessarily cause similar structural alterations, nor is there a simple correlation between structural alterations and survival.  相似文献   

3.
Visualization of freezing damage. II. Structural alterations during warming   总被引:4,自引:0,他引:4  
H Bank 《Cryobiology》1973,10(2):157-170
There is a growing amount of indirect evidence which suggests that the loss in viability of rapidly cooled cells is due to recrystallization of intracellular ice. This possibility was tested by an evaluation of the formation of morphological artifacts in rapidly cooled cells to determine whether this process can account for the loss in viability. Samples of the common yeast Saccharomyces cerevisiae were frozen at 1.8 or 1500 °C/min, and the structure of the frozen cells was examined by the use of freeze-fracturing techniques. Other cells cooled at the same rate were warmed to temperatures ranging from ?20 ° to ?50 °C and then rapidly cooled to ?196 °C, a procedure that should cause small ice crystals to coalesce by the process of migratory recrystallization. Cells cooled at 1500 °C/min and then warmed to temperatures above ?40 °C formed large intracellular ice crystals within 30 min, and appreciable recrystallization occurred at temperatures as low as ?45 °C. Cells cooled at 1.8 °C/min and warmed to temperatures as high as ?20 °C underwent little structural alteration. These results demonstrate that intracellular ice can cause morphological artifacts. The correlation between the temperature at which rapid recrystallization begins and the temperature at which the cells are inactivated indicates that recrystallization is responsible for the death of rapidly cooled cells.  相似文献   

4.
Armitage WJ  Juss BK 《Cryobiology》2003,46(2):194-196
Cells in monolayers have been reported to be more susceptible to freezing injury than the same cell type frozen in dispersed suspensions. There appears to be an enhanced susceptibility to intracellular freezing in the monolayers, which is thought to be facilitated by the presence of gap junctions allowing the spread of ice between neighbouring cells. MDCK Type II cells do not form gap junctions in monolayer culture. When frozen at rates of 0.2 to 10 degrees C/min, monolayers in 10% (v/v) propane-1,2-diol or dimethyl sulphoxide showed little influence of cooling rate on survival. This suggested that, in the absence of gap junctions, cells in monolayers did not display enhanced susceptibility to intracellular freezing. In contrast, however, monolayers frozen in glycerol showed a marked increase in cell damage when cooled at rates higher than 0.5 degrees C/min. This does not necessarily counter the suggestion that lack of gap junctions mitigates intracellular freezing as there is evidence that glycerol may itself promote intracellular freezing.  相似文献   

5.
A small-volume fluorescent dye viability assay has been successfully applied to a conduction cryomicroscope freezing-thawing stage as a means of determining post-thaw survival of the nucleated mammalian cell HeLa S-3. The survival signature for HeLa S-3 cells has been determined, revealing an optimum cooling rate of −30 °C/min where the maximum survival is 30%. No cells survive for cooling rates greater than −128 °C/min and the decreased survival at supraoptimal cooling rates coincides with a linear increase in the percentage of cells containing intracellular ice from 0% at −16 °C/min to 100% at −128 °C/min.Although no data were taken to identify increased salt concentration as the mechanism responsible for cell injury at suboptimal cooling rates, the post-thaw leakage of intracellular fluorescent dye at these rates takes approximately 4–10 min as opposed to instantaneous release of dye for cells which contain ice at the high cooling rates. This indicates two modes of damage.Cell number density has been identified as an important parameter in freezing studies since survival can be enhanced at slow rates by packing cells together in groups. Packing also causes a greater fraction of the cells in a sample to have intracellular ice present, thus decreasing survival at the faster rates. These responses can be explained by assuming that the outer cells in a group protect the inner ones from solution damage at slow rates, yet restrict water flux from the inner cells at faster rates, causing an increased likelihood of intracellular ice formation. Both of these results are consistent with the dual-mechanism freezing damage theory proposed by Mazur.  相似文献   

6.
Although cellular injury in some woody plants has been correlated with freezing of supercooled water, there is no direct evidence that intracellular ice formation is responsible for the injury. In this study we tested the hypothesis that injury to xylem ray parenchyma cells in supercooling tissues is caused by intracellular ice formation. The ultrastructure of freezing-stress response in xylem ray parenchyma cells of flowering dogwood (Cornus florida L.) was determined in tissue prepared by freeze substitution. Wood tissue was collected in the winter, spring, and summer of 1992. Specimens were cooled from 0 to -60[deg]C at a rate of 5[deg]C h-1. Freezing stress did not affect the structural organization of wood tissue, but xylem ray parenchyma cells suffered severe injury in the form of intracellular ice crystals. The temperatures at which the ice crystals were first observed depended on the season in which the tissue was collected. Intracellular ice formation was observed at -20, -10, and -5[deg]C in winter, spring, and summer, respectively. Another type of freezing injury was manifested by fragmented protoplasm with indistinguishable plasma membranes and damaged cell ultrastructure but no evidence of intracellular ice. Intracellular cavitation may be a source of freezing injury in xylem ray parenchyma cells of flowering dogwood.  相似文献   

7.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at -196 degrees C and -20 degrees C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (-196 degrees C and -80 degrees C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at -20 degrees C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

8.
Plane front freezing presents the possibility of encapsulating individual cells in the ice phase. The cells may also be pushed ahead of the plane front ice interface, as is always the case for conventional dendritic freezing, where the cells are pushed ahead of the thickening dendrite arms. Cells which are encapsulated during freezing are exposed to hypotonic liquid (pure water) initially upon thawing, while cells which are pushed into the last liquid to freeze are exposed to hypertonic liquid upon thawing. Some exposure to hypertonic intercellular liquid prior to freezing may be required to build up the salt and CPA content in the intracellular liquid and thereby avoid intracellular ice formation at the given cooling rate. Encapsulation of cells by a plane front ice interface should result in three regions of cell survival in the sample: an initial region of cell death due to intracellular ice formation, a final region of cell death due to overexposure to hypertonic intercellular liquid, and an intermediate region of cell survival, where neither damage mechanism has operated to a lethal level. An advantage of plane front freezing over dendritic freezing is that the regions of cell survival and death should be geometrically separate in the sample, rather than mixed at the dendritic microstructural level, as is the case for dendritic freezing. Samples containing populations with very high or very low survival rates for spermatozoa could be obtained by simply cutting up the frozen sample.  相似文献   

9.
A three-part, coupled model of cell dehydration, nucleation, and crystal growth was used to study intracellular ice formation (IIF) in cultured hepatocytes frozen in the presence of dimethyl sulfoxide (DMSO). Heterogeneous nucleation temperatures were predicted as a function of DMSO concentration and were in good agreement with experimental data. Simulated freezing protocols correctly predicted and explained experimentally observed effects of cooling rate, warming rate, and storage temperature on hepatocyte function. For cells cooled to -40 degrees C, no IIF occurred for cooling rates less than 10 degrees C/min. IIF did occur at faster cooling rates, and the predicted volume of intracellular ice increased with increasing cooling rate. Cells cooled at 5 degrees C/min to -80 degrees C were shown to undergo nucleation at -46.8 degrees C, with the consequence that storage temperatures above this value resulted in high viability independent of warming rate, whereas colder storage temperatures resulted in cell injury for slow warming rates. Cell damage correlated positively with predicted intracellular ice volume, and an upper limit for the critical ice content was estimated to be 3.7% of the isotonic water content. The power of the model was limited by difficulties in estimating the cytosol viscosity and membrane permeability as functions of DMSO concentration at low temperatures.  相似文献   

10.
Protective effect of intracellular ice during freezing?   总被引:9,自引:0,他引:9  
Acker JP  McGann LE 《Cryobiology》2003,46(2):197-202
Injury results during freezing when cells are exposed to increasing concentrations of solutes or by the formation of intracellular ice. Methods to protect cells from the damaging effects of freezing have focused on the addition of cryoprotective chemicals and the determination of optimal cooling rates. Based on other studies of innocuous intracellular ice formation, this study investigates the potential for this ice to protect cells from injury during subsequent slow cooling. V-79W Chinese hamster fibroblasts and Madin-Darby Canine Kidney (MDCK) cells were cultured as single attached cells or confluent monolayers. The incidence of intracellular ice formation (IIF) in the cultures at the start of cooling was pre-determined using one of two different extracellular ice nucleation temperatures (-5 or -10 degrees C). Samples were then cooled at 1 degrees C/min to the experimental temperature (-5 to -40 degrees C) where samples were warmed rapidly and cell survival assessed using membrane integrity and metabolic activity. For single attached cells, the lower ice nucleation temperature, corresponding to increased incidence of IIF, resulted in decreased post-thaw cell recovery. In contrast, confluent monolayers in which IIF has been shown to be innocuous, show higher survival after cooling to temperatures as low as -40 degrees C, supporting the concept that intracellular ice confers cryoprotection by preventing cell dehydration during subsequent slow cooling.  相似文献   

11.
A physical-chemical analysis of water loss from cells at subzero temperatures had shown that the likelihood of intracellular ice formation increased with increasing cooling rate (22). We have now used a modified version of a unique conductioncooled cryomicroscope stage (8) to observe the freezing of unfertilized mouse ova suspended in dimethyl sulfoxide. Survival measurements showed that the respective survivals of ova were about 65, 56, and 0% when they were cooled at rates of 0.2 to 1.5, 2.5, and 5.4 °C/min. Direct microscopic observation of mouse ova during freezing showed that the respective fractions of cells that froze intracellularly were 13, 72, and 100% when they were cooled at rates of 1.3, 2.9, and 4.8 °C/min or faster. These values agree with those predicted from the physical-chemical analysis for cells the size of mouse ova. The microscopic observations have also shown that intracellular freezing generally occurred at about ?40 to ?45 °C. We had previously observed that mouse embryos must be cooled slowly to ?50 °C or below if they are to survive subsequent rapid cooling to ?196 °C. The observation of intracellular ice formation at ?45 °C supports the interpretation that at temperatures above ?50 °C the embryos still contain water capable of freezing intracellularly.  相似文献   

12.
R L McKown  G J Warren 《Cryobiology》1991,28(5):474-482
Yeast, like most organisms, survives poorly under freezing conditions. It has been proposed that after rapid cooling yeast suffers a loss in viability from the recrystallization of intracellular ice. Antifreeze proteins found in the blood of certain polar fishes have been shown to be potent inhibitors of ice recrystallization at very low concentrations. We have examined the feasibility of protecting rapidly cooled yeast cells from freezing damage by inhibiting the recrystallization of intracellular ice through in vivo expression of an antifreeze analogue gene. A chemically synthesized gene encoding a protein similar to but differing from the antifreeze proteins of the fish Pseudopleuronectes americanus (winter flounder) was genetically fused to the 3' end of a truncated staphylococcal Protein A gene. When the fused gene was expressed in the budding yeast Saccharomyces cerevisiae, its cells were shown to produce a new chimeric protein that inhibited the recrystallization of ice in vitro. Yeast cells expressing the chimeric antifreeze protein showed a twofold increase in survival after rapid freezing (95 degrees C/min to -196 degrees C) and moderate rates of warming (26 to 64 degrees C/min) compared to cells lacking the chimeric protein.  相似文献   

13.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

14.
The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice.  相似文献   

15.
The first successful freezing of early embryos to −196°C in 1972 required that they be cooled slowly at ∼1°C/min to about −70°C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to −70°C, the result is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/ chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

16.
P Mazur 《Cell biophysics》1990,17(1):53-92
The first successful freezing of early embryos to -196 degrees C in 1972 required that they be cooled slowly at approximately 1 degree C/min to about -70 degrees C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to -70 degrees C, the results is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

17.
Tumor cells of an ascites sarcoma of rat were primarily frozen very rapidly with the original host ascitic fluid at ?27 °C by the spraying method. Frozen specimens were fractured and replicated at about ?100 °C under vacuum by a special spray-sandwich method for freeze-etching, and the morphological appearance of ice crystals formed in and around the frozen cells were observed by electron microscopy.The cells cooled very rapidly at ?27 °C actually froze intracellularly, and intracellular ice crystals ranged from 0.03 to 0.5 μm in grain size due to the initial freezing rate of the specimens. In the cells having granulous intracellular ice crystals less than 0.05 μm in grain size, cytoplasmic organelles seemed to maintain their original structures.We suggested in our previous report that these tumor cells, frozen very rapidly at temperatures above ?30 °C, survived intracellular freezing as long as they remained translucent, and optically no ice crystals appeared within them, as seen in intact unfrozen cells. It may therefore be concluded that the tumor cells frozen very rapidly at temperatures near ?30 °C actually freeze intracellularly and probably maintain their viability as long as the size of individual intracellular ice-crystals is kept smaller than 0.05 μm, although the exact critical size of innocuous intracellular ice crystals is uncertain.  相似文献   

18.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

19.
The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice. However, no direct evidence of intracellular ice has been presented. An alternative mechanism has been proposed by Morris (2006) that cell damage is a result of an osmotic imbalance encountered during thawing. This paper examines whether intracellular ice forms during rapid cooling or if an alternative mechanism is present. Horse spermatozoa were cooled at a range of cooling rates from 0.3 to 3,000 degrees C/min in the presence of a cryoprotectant. The ultrastructure of the samples was examined by Cryo Scanning Electron Microscopy (CryoSEM) and freeze substitution, to determine whether intracellular ice formed and to examine alternative mechanisms of cell injury during rapid cooling. No intracellular ice formation was detected at any cooling rate. Differential scanning Calorimetry (DSC) was employed to examine the amount of ice formed at different rate of cooling. It is concluded that cell damage to horse spermatozoa, at cooling rates of up to 3,000 degrees C/min, is not caused by intracellular ice formation. Spermatozoa that have been cooled at high rates are subjected to an osmotic shock when they are thawed.  相似文献   

20.
Although it is often assumed that survival of freezing requires that ice formation must be restricted to extracellular compartments, fat body cells from freeze-tolerant larvae of the gall fly, Eurosta solidaginis (Diptera, Tephritidae) survive intracellular freezing. Furthermore, these cells are highly susceptible to inoculative freezing by external ice, undergo extensive lipid coalescence upon thawing, and survive freezing better when glycerol is added to the suspension medium. To determine whether these traits are required for intracellular freeze tolerance or whether they are incidental and possessed by fat body cells in general, we investigated the capacity of fat body cells from nondiapause-destined and diapause-destined (i.e., cold-hardy) larvae of the freeze-intolerant flesh fly Sarcophaga crassipalpis (Diptera, Sarcophagidae) to survive intracellular freezing. Fat body cells from both types of larvae were highly susceptible to inoculative freezing; all cells froze between -3.7 to -6.2 degrees C. The highest rates for survival of intracellular freezing occurred at -5 degrees C. The addition of glycerol to the media markedly increased survival rates. Upon thawing, the fat body cells showed little or no lipid coalescence. Fat body cells from E. solidaginis had a water content of only 35% compared to cells from S. crassipalpis larvae that had 52-55%; cells with less water may be less likely to be damaged by mechanical forces during intracellular freezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号