首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic hypoxia produces an inflammatory response characterized by increases in reactive O(2) species (ROS), venular leukocyte-endothelial adherence and emigration, and vascular permeability. Inflammation is typically initiated by mediators released from activated perivascular cells that generate the chemotactic gradient responsible for extravascular leukocyte accumulation. These experiments were directed to study the possible participation of mast cells in hypoxia-induced microvascular inflammation. Mast cell degranulation, ROS levels, leukocyte adherence and emigration, and vascular permeability were studied in the mesenteric microcirculation by using intravital microscopy of anesthetized rats. The main findings were 1) activation of mast cells with compound 48/80 in normoxia produced microvascular effects similar, but not identical, to those of hypoxia; 2) systemic hypoxia resulted in rapid mast cell degranulation; 3) blockade of mast cell degranulation with cromolyn prevented or attenuated the hypoxia-induced increases in ROS, leukocyte adherence/emigration, and vascular permeability; and 4) mast cell degranulation during hypoxia was prevented by administration of the antioxidant lipoic acid and of nitric oxide. These results show that mast cells play a key role in hypoxia-induced inflammation and suggest that alterations in the ROS-nitric oxide balance may be involved in mast cell activation during hypoxia.  相似文献   

2.
Neurogenic inflammation, vascular permeability, and mast cells   总被引:6,自引:0,他引:6  
Electrical stimulation (ES) of sensory nerves causes increased vascular permeability and vasodilatation, a process known as neurogenic inflammation. The purpose of this study was to assess the role of mast cells in neurogenic inflammation induced by ES of sensory nerves. ES of the rat saphenous nerve for 1, 3, 5, 15, or 30 min induced a 166 to 436% increase in the amount of 125I-albumin deposited in the skin. Through the initial 15 min of ES, the histamine content of the skin remained unchanged. However, 30 min of ES caused a 22.1% decrease in skin histamine (p less than 0.05). ES for 5 min followed by measurement of vascular permeability from 0 to 30 min thereafter resulted in maximal increases in 125I-albumin in the skin immediately after cessation of the pulse of ES. When skin histamine was measured at various intervals after a 5-min pulse of ES, no change in the histamine content was observed through the subsequent 30 min. When mast cell degranulation was assessed histologically, 5 min of ES failed to stimulate mast cell degranulation. However, 30 min of ES caused a significant increase in the proportion of degranulating mast cells. When draining venous plasma histamine was monitored before, during and after ES, no change in plasma histamine was observed. In contrast, the intradermal injection of 5 micrograms of compound 48/80 produced a significant increase in plasma histamine. In order to examine the possibility that histamine might be released but remain in the skin after ES, skin "blisters" were developed by intradermal injections of saline. There was a significant increase in the amount of 125I-albumin extravasated into blister fluid measured after 3, 5, and 10 min of ES and a significant increase in histamine after 5 or 10 min. Therefore, prolonged ES of sensory nerves can cause mast cell degranulation. However, ES causes increased vascular permeability at times when no mast cell activation can be observed. These data suggest that the initial phases of neurogenic inflammation are independent of mast cell activation.  相似文献   

3.
Substance P, a potent vasodilatory neuropeptide, is released from peripheral nerve endings of sensory neurons by various stimuli. Although in vitro incubation of rat and human mast cells with substance P causes their degranulation, it is not known whether inflammatory changes induced by substance P are mediated by degranulation of mast cells. We investigated this point by using genetically mast cell-deficient WBB6F1-W/Wv and WCB6F1-Sl/Sld mice. The s.c. injection of substance P induced degranulation of mast cells in the skin of WBB6F1-+/+ mice, and then a marked eosinophil infiltration around the degranulated mast cells. However, WBB6F1-W/Wv and WCB6F1-Sl/Sld mice showed little or no eosinophil infiltration in the skin after the injection of substance P. When the mast cell deficiency of WBB6F1-W/Wv mice was rescued either systemically by bone marrow transplantation or locally by injection of cultured mast cells, injection of substance P induced the infiltration of eosinophils, suggesting that substance P-induced eosinophil infiltration was mediated through degranulation of mast cells.  相似文献   

4.
In the rat larynx, plasma exudation and edema formation were studied by light and electron microscopy after i.v. injections of the mast cell activator compound 48/80, substance P, and capsaicin. The morphological effects of substance P and capsaicin on connective tissue mast cells in vivo were also examined. Of the drugs tested, only compound 48/80 degranulated the connective tissue mast cells. All drugs induced a subepithelial plasma exudation in the subglottic region, with edema in the lamina propria and widened intraepithelial intercellular spaces, though the tight junction regions seemed intact. In the epiglottis, 10 min after compound 48/80 injection, there was edema in the lamina propria on the lingual side, with an intact and tight epithelial lining. No morphological sign of edema was found in the epiglottis after injection of substance P or capsaicin. The pronounced effect found in the epiglottic region after compound 48/80 injection was due to the release of mediators such as histamine and 5-hydroxytryptamine from the connective tissue mast cells. This study supports the belief that substance P in vivo mediates an increased vascular permeability by a direct effect on the blood vessels – a mechanism distinct from mast cell degranulation.  相似文献   

5.
The influence of trophoblast-specific beta 1-glycoprotein (TSG) on the degranulation of mast cells and their saturation with heparin was studied. Introduction of the TSG into the population of mast cells of the rat peritoneal fluid practically does not change their degranulation, but lowers the degree of their saturation with heparin. An antibiotic alone increases the saturation of the cells with heparin. The serum of an allergic animal markedly stimulates the degranulation and lowers the degree of saturation of the mast cells with heparin. In an experimental model (antibiotic--the serum of the allergic mast cells) the mast cells transform into very clear (heparin-free) cells and the degree of saturation is at minimum. The TSG introduction into this system stabilizes the population of mast cells and markedly increases the degree of their saturation with heparin. Although the degranulation is rather intensive, it is less expressed, than in the experimental model. This suggests the presence of TSG receptors on the mast cells (targets of allergic reactions). The possibility to use TSG preparations in the therapy of allergic diseases is discussed.  相似文献   

6.
In vitro degranulation of rat mast cells was studied at different intervals ranging from 10 to 60 sec after adding the histamine liberator, compound 48/80 (0.4 µg/ml, 17°C). The ultrastructural changes were followed by electron microscopy, and parallel assays were made to determine the histamine released. In addition, the extracellular tracers lanthanum and hemoglobin (demonstrated by its peroxidative activity) were applied to mast cells to follow communication of the extracellular space with the cavities formed during degranulation. After a lag period of 10 sec, degranulation started in the most peripherally located granules. The perigranular membrane fused with the plasma membrane, resulting in a pore bridged by a thin diaphragm. This was followed by rupture of the diaphragm and extrusion of the granule matrix (exocytosis). The process advanced towards the cell interior by fusion and opening of the deeper situated granules to the formerly opened granule cavities. At the end of the process, the cell was filled by a system of complicated cavities containing a number of altered granules. Extracellular tracers have shown that these intracellular cavities were in unbroken communication with the extracellular space from the very beginning of their formation. Both lanthanum and hemoglobin were found to be adsorbed to the limiting membrane of the cavities and bound to altered mast cell granules. In contrast, no tracer substance was present in nondegranulating mast cells. Degranulation of mast cells by compound 48/80 is regarded as a sequential exocytosis, a process similar to that described for some exocrine gland cells. All the "intracellular" cavities, formed by degranulation, were shown to communicate with the extracellular space; consequently, granules lying in these cavities must be considered as biologically extracellular. The present findings support the view that histamine is released from the granule matrix by the extracellular ionic milieu.  相似文献   

7.
Activation of cutaneous sensory nerves induces vasodilatation and vascular permeability, i.e., neurogenic inflammation. We examined the histology and possible mast cell involvement in cutaneous neurogenic inflammation induced by electrical nerve stimulation (ENS). Three lines of evidence indicated that mast cells were not involved in rodent cutaneous neurogenic inflammation induced by electrical stimulation of the saphenous nerve. 1) Most mast cells (86.5% of all mast cells in the dorsal skin of the paw) were found in the deep dermis, whereas vessels developing increased vascular permeability after nerve stimulation (visualized with the supravital dye Monastral blue B, a macro-molecular tracer) were localized predominantly in the superficial dermis. By contrast, i.v. substance P, which also causes increased cutaneous vascular permeability, predominantly caused deeper vessels to leak. As analyzed by electron microscopy, the vessels that developed permeability in response to nerve stimulation, and were thereby stained with Monastral blue B, were found to be exclusively postcapillary venules. 2) Disodium cromoglycate (DSCG), a mast cell stabilizing compound, inhibited the cutaneous vascular permeability induced by intradermal injections of anti-IgE in a dose-dependent manner. By contrast, vascular permeability induced by ENS was not influenced by disodium cromoglycate treatment. 3) ENS and i.v. substance P both induced cutaneous vascular permeability in mast cell-deficient W/Wv mice, despite the fact that their skin contained only 4.7% of the mast cells present in their normal +/+ litter mates. The magnitude of ENS-induced vascular permeability responses in W/Wv mice were similar to control +/+ and BALB/c mice. This study supports our earlier observations suggesting that mast cell activation is not essential for the initial, vascular permeability phase of neurogenic inflammation in rodent skin.  相似文献   

8.
Group II phospholipase A2 was detected in appreciable amounts in rat peritoneal mast cells. The effect of several inhibitors specific to 14-kDa group-II phospholipase A2, including two proteinaceous inhibitors and a product of microorganisms with a low molecular mass, on mast-cell activation was examined. When rat peritoneal mast cells were sensitized with IgE and then challenged with antigen, the specific phospholipase-A2 inhibitors suppressed histamine release in a concentration-dependent manner. By contrast, these inhibitors showed no effect on prostaglandin generation under the same conditions. Histamine release from rat peritoneal mast cells subjected to non-immunochemical stimuli, such as concanavalin A, the Ca2+ ionophore A23187, compound 48/80 and substance P was also suppressed. When rat peritoneal mast cells were treated with 14-kDa-group-II-phospholipase-A2-specific inhibitors, washed and stimulated, histamine release was not affected appreciably. Similar suppressive effects of the inhibitors on histamine release were observed with mouse cultured bone-marrow-derived mast cells. When bone-marrow-derived mast cells were activated, they secreted both a soluble and an ecto-enzyme form of 14-kDa group-II phospholipase A2, although appearance of the enzyme associated with the external surface of cells was observed transiently. An appreciable amount of membrane phospholipids was degraded during activation of mast cells, which was decreased by treatment with 14-kDa-group-II-phospholipase-A2 inhibitor. These observations suggest that degranulation and eicosanoid generation in mast cells are regulated independently by discrete phospholipases A2 and that the 14-kDa group-II phospholipase A2 released from mast cells during activation may play an essential role in the progression of the degranulation process.  相似文献   

9.
Sun K  Wang CS  Guo J  Horie Y  Fang SP  Wang F  Liu YY  Liu LY  Yang JY  Fan JY  Han JY 《Life sciences》2007,81(6):509-518
Ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), and notoginsenoside R1 (R1) are major active components of Panax notoginseng, a Chinese herb that is widely used in traditional Chinese medicine to enhance blood circulation and dissipate blood stasis. To evaluate the effect of these saponins on microcirculatory disturbance induced by lipopolysaccharide (LPS), vascular hemodynamics in rat mesentery was observed continuously during their administration using an inverted microscope and a high speed video camera system. LPS administration decreased red blood cell velocity but Rb1, Rg1, and R1 attenuated this effect. LPS administration caused leukocyte adhesion to the venular wall, mast cell degranulation, and the release of cytokines. Rb1, Rg1, and R1 reduced the number of adherent leukocytes, and inhibited mast cell degranulation and cytokine elevation. In vitro experiments using flow cytometry further demonstrated that a) the LPS-enhanced expression of CD11b/CD18 by neutrophils was significantly depressed by Rb1 and R1, and b) hydrogen peroxide (H(2)O(2)) release from neutrophils in response to LPS stimulation was inhibited by treatment with Rg1 and R1. These results suggest that the protective effect of Rb1 and R1 against leukocyte adhesion elicited by LPS may be associated with their suppressive action on the expression of CD11b/CD18 by neutrophils. The protective effect against mast cell degranulation by Rb1 and R1, and the blunting of H(2)O(2) release from neutrophils by Rg1 and R1 suggest mechanistic diversity in the effects of Panax notoginseng saponins in the attenuation of microcirculatory disturbance induced by LPS.  相似文献   

10.
Disturbances of the microvascular permeability were studied by the "vascular labelling" technique during the immobilization stress of hypophysectomized and adrenalectomized rats. Animals with sham operations served as controls. As revealed, hypophysectomy and adrenalectomy caused disturbances of vascular permeability in the mesentery. Vascular permeability disturbances in the hypophysectomized and adrenalectomized rats under conditions of immobilization were more expressed than in the sham-operated animals. Removal of the pituitary and adrenal glands produced mast cell degranulation at the earlier immobilization period.  相似文献   

11.
The presence of ANP in rat peritoneal mast cells   总被引:5,自引:0,他引:5  
Atrial natriuretic peptide (ANP) is an important component of the natriuretic peptide system. A great role in many regulatory systems is played by mast cells. Meanwhile involvement of these cells in ANP activity is poorly studied. In this work, we have shown the presence of ANP in rat peritoneal mast cells. Pure fraction of mast cells was obtained by separation of rat peritoneal cells on a Percoll density gradient. By Westem blotting, two ANP-immunoreactive proteins of molecular masses of 2.5 kDa and 16.9 kDa were detected in lysates from these mast cells. Electron microscope immunogold labeling has revealed the presence of ANP-immunoreactive material in storage, secreting and released granules of mast cells. Our findings indicate the rat peritoneal mast cells to contain both ANP prohormone and ANP. These both peptides are located in mast cell secretory granules and released by mechanism of degranulation. It is discussed that many mast cell functions might be due to production of natriuretic peptides by these cells.  相似文献   

12.
The therapeutic effect of mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium bromide (SkQ1) in experimental models of acute inflammation and wound repair has been shown earlier. It was suggested that the antiinflammatory activity of SkQ1 is related to its ability to suppress inflammatory activation of the vascular endothelium and neutrophil migration into tissues. Here, we demonstrated that SkQ1 inhibits activation of mast cells (MCs) followed by their degranulation and histamine release in vivo and in vitro. Intraperitoneal injections of SkQ1 in the mouse air-pouch model reduced the number of leukocytes in the air-pouch cavity and significantly decreased the histamine content in it, as well as suppressing MC degranulation in the air-pouch tissue. The direct effect of SkQ1 on MCs was studied in vitro in the rat basophilic leukemia RBL-2H3 cell line. SkQ1 inhibited induced degranulation of RBL-2H3 cells. These results suggest that mitochondrial reactive oxygen species are involved in the activation of MCs. It is known that MCs play a crucial role in regulation of vascular permeability by secreting histamine. Suppression of MC degranulation by SkQ1 might be a significant factor in the antiinflammatory activity of this mitochondria-targeted antioxidant.  相似文献   

13.
The significant increase of heparin release from mast cells was observed in rats under stress conditions induced by 60 min immobilization. The index of its saturation with heparin became 4 times lower. The highest secretory activity of mast cells was observed during the first 30 min of immobilization. It was shown that at that time the heparin release from mast cells occurred by granulolysis (merocrine type of secretion). In the rats received heparin (15 or 150 u/200 g) during the first 15 min of immobilization the mast cells released heparin with the same intensity as in a 4 control animals. But then in rats with high heparin blood concentration the heparin release from mast cells ceased and mast cells began to accumulate heparin from blood. By the 30th min of immobilization the heparin content in the mast cells has become normal.  相似文献   

14.
Mast cells contain granules packed with a mixture of proteins that are released on degranulation. The proteoglycan serglycin carries an array of glycosaminoglycan (GAG) side chains, sometimes heparin, sometimes chondroitin or dermatan sulphate. Tight packing of granule proteins is dependent on the presence of serglycin carrying these GAGs. The GAGs of mast cells were most intensively studied in the 1970s and 1980s, and though something is known about the fine structure of chondroitin sulphate and dermatan sulphate in mast cells, little is understood about the composition of the heparin/heparan sulphate chains. Recent emphasis on the analysis of mast cell heparin from different species and tissues, arising from the use of this GAG in medicine, lead to the question of whether variations within heparin structures between mast cell populations are as significant as variations in the mix of chondroitins and heparins.  相似文献   

15.
Substance P is a neuropeptide involved in inflammation, immune regulation and stress response. Stress may induce bladder damage by stimulating inflammatory response such as mast cell activation. We here examined the role substance P during stress-induced mast cell degranulation and urothelial injury in rat bladder. Adult Sprague-Dawley rats (200-270 g) were either exposed to cold-immobilization stress or substance P (SP) intracerebroventricularly. Different doses of substance P receptor (NK1R) antagonist CP 99994 were administered peripherally or centrally before the stress exposure. From each group, samples of the bladder were examined with light and electron microscope. Stress- and SP-injected centrally, increased the number of both granulated and degranulated mast cells. Ultrastructurally, urothelial degeneration with vacuolization in the cytoplasm and dilated intercellular spaces were seen. Both central and peripheral injection of CP 99994 prevented stress-induced urothelial degeneration as well as stress-induced mast cell degranulation. In conclusion, centrally and peripherally released substance P is involved in stress-induced bladder damage. Inhibition of NK1R prevents stress-induced pathological changes of urinary bladder and NK1R antagonist can be considered for the treatment of inflammatory bladder diseases.  相似文献   

16.
The intravenous administration of 2M NaCl causes marked swelling, vacuolization and degranulation of rat mesenteric mast cells. 72 h of water deprivation (with food available) doubled the number of mast cells in the rat mesentery. Both experimental conditions induced venular labeling. In vitro, up to 300 mM NaCl did not elicit the release of amines from the mast cell. These results led us to infer the existence of some intermediary between hyperosmolarity and mast cell activation. Increased venular permeability, mast cell degranulation and proliferation are common features in inflammatory processes. Sodium salicylate, a non steroidal anti-inflammatory drug, was found to inhibit specifically cell dehydration thirst. A connection between inflammation and the peripheral mechanisms which trigger the central elaboration of the sensation of thirst is suggested.  相似文献   

17.
Mastocytosis is a common feature around solid tumors. Due to mast cell (MC) degranulation, heparin and other chemical mediators are released to surrounding tissues. The aim of this paper is to investigate the role of heparin and chemically modified heparins, on a murine mammary adenocarcinoma cell line adhesion properties, and the relationship with the presence of heparin binding sites in tumor cells. We show that heparin increases tumor cell adhesion in a dose-dependent manner. When the number of heparin binding sites was regulated, by culturing the cells with different FCS concentration for 24 hours, a correlation between binding capacity and heparin effect on cell adhesion was observed. The increment on cell adhesion by heparin was lower on cells with less heparin binding sites. Moreover, only heparin and a chemically modified heparin (partially N-desulfated N-acetylated), which bound to heparin-receptor, retained the ability to stimulate cell adhesion, while other modified heparins lost both effects. The increase in cell adhesion was observed on plastic dishes, albumin, as well as on fibronectin pre-coated ones suggesting that heparin effect is substratum independent. Our results show a direct relation between heparin binding to specific cell receptors and increase in cell attachment.  相似文献   

18.
19.
Cytotoxicity of Vibrio vulnificus cytolysin on rat peritoneal mast cells   总被引:3,自引:0,他引:3  
Histamine has been thought to be a permeability enhancing factor in Vibrio vulnificus infection. The injection of living bacteria or purified V. vulnificus cytolysin (VVC) can cause lethality in mice by inducing hemoconcentration and increased vascular permeability. In the present study, we tried to identify whether histamine release causes the increased vascular permeability that is responsible for the lethal effect of VVC. Treatment of rat peritoneal mast cells with high concentrations of VVC caused the release of whole cellular histamine and lactate dehydrogenase (LDH). At concentrations less than 10 HU/ml, histamine and LDH were not released whereas preloaded 2-deoxy-D-glucose was rapidly effluxed with the concomitant decrease in cellular ATP. VVC-treated mast cells were refractory to the stimulation of histamine secretion by Compound 48/80 but remained fully responsive to Ca2+ plus GTP-gamma-S. These results indicate that histamine can be released from mast cells only when the concentration of VVC is high enough to cause the lysis of cells. At low concentrations, VVC does not induce the release of stored histamine from damaged cells. The intravenous injection of 80 HU purified VVC to rats, which can produce the calculated blood concentration of about 3 HU/ml, caused a marked increase in pulmonary vascular permeability, hemoconcentration and death. However, no increase in blood histamine level was detected. This level of VVC in rat blood was enough to cause severe hemoconcentration and lethality but might not be enough to cause cytolysis of the mast cells and resulting histamine release.  相似文献   

20.
Summary Adult rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with capsaicin, substance P, serotonin, or a control of saline vehicle or bovine serum albumin (0.5 g/g body weight). Fish were sacrificed 30 min and 1,2 and 4 h post-injection, the gut was dissected out, and a small section of the upper intestine was processed for electron microscopy. A significant proportion of eosinophilic granule cells (EGCs) of the intestine were in close association with non-myelinated neuronal bundles in all fish (4 fish per treatment and time period), but there was no significant difference between treatment or time, suggesting that the association was unaffected by these factors. Close examination of EGC ultrastructure showed that fish treated with capsaicin and substance P exhibited limited degranulation of the EGCs in the stratum compactum and extensive crinophagic-like degranulation in the lamina propria. Cells of the lamina propria contained characteristic multivesicular-like bodies. The degranulation was reminiscent of both mast cell degranulation and endocrine cell crinophagy. EGCs of fish treated with serotonin or a control were unaffected, suggesting that the serotoninergic neurons, believed to be involved in gut motility, were not responsible for degranulation. It is apparent that EGCs of the trout intestine may be under nervous control, as has been demonstrated previously for mammalian mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号