首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent theoretical models and empirical studies of fruit flies, birds, and fish indicate that assortative mating may initiate speciation when physical barriers to gene flow are absent, and before postzygotic barriers evolve. These are important results for marine animals like coral reef fish, where ocean currents can carry planktonic larvae over broad ranges, interconnecting populations and slowing genetic divergence. The Caribbean hamlets (genus Hypoplectrus) are a flock of reef fish morphospecies with highly distinct color pattern that mate like with like, but show little mitochondrial or microsatellite DNA differentiation. Here, we broadly screen genomic diversity using amplified fragment length polymorphisms (AFLP) and survey mating pair formation between two morphospecies in the Florida Keys, the butter hamlet (H. unicolor) and the blue hamlet (H. gemma). No AFLP was species-diagnostic (fixed), and neighbor-joining analyses revealed no clustering of individuals consistent with morphospecies boundaries. Assignment tests, however, placed most individuals within their morphospecies of origin. Field surveys showed that > 98% of mating pairs, including those of rare morphospecies, were of like color pattern. Spawning by a single mixed pair adds to earlier observations suggesting that infrequent hybridization may be a genetically homogenizing force in Hypoplectrus. This study provides a clear example of strong assortative mating in a system with limited genetic differentiation.  相似文献   

2.
Evidence shows that social cooperation among kin may evolve even in birds with extensive dispersal. In such cases, maintaining kinship during dispersal is essential to the subsequent expression of kin cooperation. This hypothesis has not been examined for most bird species. We addressed it in the ground tit (Parus humilis), a passerine where kin frequently interact in terms of cooperative polygamy and extra‐pair mating despite fast annual turnover of the breeding population. Pedigree and genotype data showed that while groups varied in composition throughout the non‐breeding season due to continual individual emigration and immigration, they always contained kin coalitions consisting of either local or immigrant individuals of different age and sexes. The first‐order kin coalitions, according to the information from local individuals, stemmed from single‐family lineages (siblings and their parents), and the lower‐order ones from neighbouring, related family lineages that merged after fledging. It was probable that immigrants had formed kin coalitions in similar ways before dispersing. Groups broke up in the breeding season. Pairing between unrelated individuals from different coalitions within a group was more likely, whereas related individuals from the same coalition tended to nest near each other. The resulting fine‐scale population genetic structure is expected to facilitate breeding interactions among kin. Our findings give clues to understanding the evolution of social cooperation in relation to dispersal.  相似文献   

3.
Gene flow between coexisting or nearby populations normally prevents genetic divergence and local adaptation. Despite this, there are an increasing number of reports of sympatric sister taxa, indicating potential divergence and speciation in the face of gene flow. A large number of such reported cases involve lake-dwelling fish, which are expected to run into few physical barriers to dispersal within their aquatic habitat. However, such cases may not necessarily reflect sympatric speciation if cryptic dispersal barriers are common in lakes and other aquatic systems. In this study, we examined genetic differentiation in perch (Perca fluviatilis L.) from nine locations in a single, small lake (24 km(2)), using microsatellites. We detected significant genetic differentiation in all but two pairwise comparisons. These patterns were not consistent with divergence by distance or the existence of kin groups. Instead, they suggest that cryptic barriers to dispersal exist within the lake, allowing small-scale genetic divergence. Such an observation suggests that allopatric (or parapatric) divergence may be possible, even in small, apparently homogenous environments such as lakes. This has important consequences for how we currently view evidence from nature for sympatric speciation.  相似文献   

4.
Grouping provides many potential benefits to individuals in terms of foraging and anti-predator protection. However, it has been suggested that individuals could gain additional benefits in terms of indirect fitness by grouping with kin. Surprisingly, the genetic composition of wild fish shoals and the importance of kin-associated shoaling remain poorly understood. The Trinidadian guppy (Poecilia reticulata) has life history traits that might promote kin structure of shoals such as internal fertilisation and small brood size in contrast to many other fish species. Even though previous studies did not find any indication of kin structure in shoals of adult guppies, it is possible that related juveniles remain together in shoals, partly because of lower mobility and because the advantages of kin association may change with age. Using 10 microsatellite markers, we conducted a genetic analysis on 40 shoals from four populations. Pair-wise relatedness was inferred using a modified version of the software package COLONY and permutation tests were conducted to test the hypothesis that kin occur together in juvenile shoals more often than expected by chance. The frequency of sib dyads among juveniles within shoals was significantly larger than that between shoals in two high predation populations but not in two low predation populations. This finding contributes to the understanding of factors underlying shoal composition and highlights the potential of recent methodological advances for detecting such relationships.  相似文献   

5.
In this study, thirty-six individuals of Acheilognathus macropterus were collected from the Heilongjiang River,the Yangtze River,and the Nandujiang River.Partial mitochondrial cytochrome b gene region (636 base pair) was sequenced to these samples and 22 haplotypes were found.With A.chankaensis and A.tokinensis as outgroups,their relationships were analyzed.The p-distances were calculated with Mega software and a molecular phyiogenetic tree was constructed using the neighbor-joining (NJ) method.The proportions of main morphological characters were compared as well.P-distances showed that the genetic differences in A.macropterus samples were far smaller than those between these samples and the outgroups.The molecular phylogenetic tree shows that samples with barbels and those without barbels were intermingled.There was no distinctive difference in proportions of morphological characteristics among them.These results suggested that samples with barbels and those without barbels (formally identified as A.taenianalis) are the same species;A.taenianalis is synonymous with A.macropterus.The thirtysix individuals were grouped into five clades and the positions of the samples in the clades were correspondingly grouped within their geographical distributions.Among the five clades,clades 1 and 5 included samples from the Heilongjiang River and Nandujiang River respectively.The samples from the Yangtze River scattered into clades 2,3,and 4.There were distinctive genetic differences (> 5%)among them.Interestingly,the distributions of the 21 samples in these three clades were not correlated to their geographical distributions.It is postulated that these genetic differences were due to the bitterlings' mating choice mechanism,the prozygotic isolation.The genetic differences between the fish from Nandujiang River and those from the mainland indicated that they were separated early.However,the small genetic differences among the samples and the positions of the fish from the Heilonjiang River in the molecular phylogenetic tree indicate that fish in Heilongjiang River might have dispersed from the Yangtze River to that area much later.  相似文献   

6.
Polymorphic dispersal strategies are found in many plant and animal species. An important question is how the genetic variation underlying such polymorphisms is maintained. Numerous mechanisms have been discussed, including kin competition or frequency-dependent selection. In the context of sympatric speciation events, genetic and phenotypic variation is often assumed to be preserved by assortative mating. Thus, recently, this has been advocated as a possible mechanism leading to the evolution of dispersal polymorphisms. Here, we examine the role of assortative mating for the evolution of trade-off-driven dispersal polymorphisms by modeling univoltine insect species in a metapopulation. We show that assortative mating does not favor the evolution of polymorphisms. On the contrary, assortative mating favors the evolution of an intermediate dispersal type and a uni-modal distribution of traits within populations. As an alternative, mechanism dominance may explain the occurrence of two discrete morphs.  相似文献   

7.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

8.

Background  

Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples.  相似文献   

9.
While habitat alteration has considerable potential to disrupt important within-population processes, such as mating and kin structure, via changed patterns of dispersal, this has rarely been tested. We are investigating the impact of anthropogenic habitat alteration on the population biology of the rock-dwelling Australian lizard Egernia cunninghami on the Central Tablelands of New South Wales, Australia, by comparing deforested and adjacent naturally vegetated areas. The novel analyses in this paper, and its companion, build on previous work by adding a new replicate site, more loci and more individuals. The additional microsatellite loci yield sufficient power for parentage analysis and the sociobiological inferences that flow from it. Genetic and capture-mark-recapture techniques were used to investigate mate and site fidelity and associated kin structure. Analyses of the mating system and philopatry using 10 microsatellite loci showed high levels of site fidelity by parents and their offspring in natural and deforested habitats. Parentage assignment revealed few individuals with multiple breeding partners within seasons and fidelity of pairs across two or more breeding seasons was typical. Despite reduced dispersal, increased group sizes and significant, dramatic increases in relatedness among individuals within rock outcrops in deforested areas, no significant differences between deforested and natural areas were evident in the degree of multiple mating or philopatry of breeding partners within and across seasons. With the exception that there was a significantly higher proportion of unmated males in the deforested area, the social and mating structure of this species has so far been surprisingly robust to substantial perturbation of dispersal and relatedness structure. Nonetheless, approximately 10-fold elevation of mean pairwise relatedness in the deforested areas has great potential to increase inbred matings, which is investigated in the companion paper.  相似文献   

10.
In lekking species, males cluster on specific areas for display (the leks) and females generally prefer to copulate with males on large aggregations. The maintenance of leks in which only a few males reproduce might be explained if subordinate males gain indirect fitness benefits. By joining a lek on which relatives are displaying, subordinates might attract more females to the lek thereby increasing the mating opportunities of their kin. In black grouse, a genetic structure among leks has previously been found suggesting that relatives could display together. Using 11 microsatellite loci, we extended this result by testing for the presence of kin structures in nine black grouse leks (101 males). The genetic differentiation among flocks was higher in males than in females, suggesting female-biased dispersal and male philopatry. Because of this genetic structure, males were more related within than among leks. However, the mean relatedness within each lek hardly differed from zero. The lekking males were not more related than random assortments of males from the winter flocks and there were no kin clusters within leks. Thus, black grouse males do not choose to display with and close to relatives. Male philopatry alone was not sufficient to induce elevated levels of relatedness on the leks either because of male partial dispersal or a rapid turnover of the successful males. The indirect fitness benefits associated with males' settlement decision are probably limited compared to the direct benefits of joining large aggregations such as increased current and future mating opportunities.  相似文献   

11.
Yue GH  Xia JH  Liu F  Lin G 《PloS one》2012,7(6):e37976
Movement of individuals influences individual reproductive success, fitness, genetic diversity and relationships among individuals within populations and gene exchange among populations. Competition between males or females for mating opportunities and/or local resources predicts a female bias in taxa with monogamous mating systems and a male-biased dispersal in polygynous species. In birds and mammals, the patterns of dispersal between sexes are well explored, while dispersal patterns in protandrous hermaphroditic fish species have not been studied. We collected 549 adult individuals of Asian seabass (Lates calcarifer) from four locations in the South China Sea. To assess the difference in patterns of dispersal between sexes, we genotyped all individuals with 18 microsatellites. Significant genetic differentiation was detected among and within sampling locations. The parameters of population structure (F(ST)), relatedness (r) and the mean assignment index (mAIC), in combination with data on tagging-recapture, supplied strong evidences for female-biased dispersal in the Asian seabass. This result contradicts our initial hypothesis of no sex difference in dispersal. We suggest that inbreeding avoidance of females, female mate choice under the condition of low mate competition among males, and male resource competition create a female-biased dispersal. The bigger body size of females may be a cause of the female-biased movement. Studies of dispersal using data from DNA markers and tagging-recapture in hermaphroditic fish species could enhance our understanding of patterns of dispersal in fish.  相似文献   

12.
Animal dispersal is associated with diverse costs and benefits that vary among individuals based on phenotype and ecological conditions. For example, females may disperse when males benefit more from defending territories in familiar environments. Similarly, size differences in dispersal propensity may occur when dispersal costs are size-dependent. When individuals do disperse, they may adopt behavioral strategies that minimize dispersal costs. Dispersing fish, for example, may travel within shoals to reduce predation risks. Further, kin shoaling may augment inclusive fitness by reducing predation of relatives. However, studies are lacking on the role of kin shoaling in dispersal. We explored how sex and size influence dispersal and kin shoaling in the cichlid Neolamprologus caudopunctatus. We microsatellite genotyped over 900 individuals from two populations separated by a potential dispersal barrier, and documented patterns of population structure, migration and within-shoal relatedness. Genetic differentiation across the barrier was greater for smaller than larger fish, suggesting larger fish had dispersed longer distances. Females exhibited weaker genetic differentiation and 11 times higher migration rates than males, indicating longer-distance female-biased dispersal. Small females frequently shoaled with siblings, possibly offsetting dispersal costs associated with higher predation risks. In contrast, small males appeared to avoid kin shoaling, possibly to avoid local resource competition. In summary, long-distance dispersal in N. caudopunctatus appears to be female-biased, and kin-based shoaling by small females may represent a behavioral adaptation that reduces dispersal costs. Our study appears to be the first to provide evidence that sex differences in dispersal influence sex differences in kin shoaling.  相似文献   

13.
Few studies have critically investigated the genetic composition of wild fish schools. Yet, such investigations may have profound implications for the understanding of social organization and population differentiation in both fundamental and applied research. Using 20 microsatellite loci, we investigated the composition of 53 schools (total n = 211) of adult and subadult migratory brook charr (Salvelinus fontinalis) sampled from the known feeding areas of two populations inhabiting Mistassini Lake (Québec, Canada). We specifically tested whether (i) school members originated from the same population, (ii) individuals from the same population within schools were kin (half- or full-siblings), and (iii) kin schooling relationships differed between sexes. Randomization tests revealed a tendency for most schools to be population specific, although some schools were population mixtures. Significantly more kin were found within schools than expected at random for both populations (approximately 21-34% of the total number of school members). This result, combined with the observed size range of individuals, indicated that stable associations between kin may occur beyond juvenile stages for up to 4 years. Nevertheless, a high proportion of school members were non-kin (approximately 66-79%). No differences were detected between sexes in the propensity to school with kin. We discuss the hypothesis that the stable kin groups, rather than arising from kin selection, may instead be a by-product of familiarity based on individual selection for the maintenance of local adaptations related to migration (natal and feeding area philopatry). Our results are noteworthy because they suggest that there is some degree of permanence in the composition of wild fish schools. Additionally, they support the hypothesis that schools can be hierarchically structured (from population members down to family groups) and are thus nonrandom genetic entities.  相似文献   

14.
Levels of inbreeding are highly variable in natural populations. Inbreeding can be due to random factors (like population size), limited dispersal, or active mate choice for relatives. Because of inbreeding depression, mating with kin is often avoided, although sometimes intermediately related individuals are preferred (optimal outbreeding). However, theory predicts that the advantages of mating with close kin can override the effects of inbreeding depression, but in the animal kingdom, empirical evidence for this is scarce. Here we show that both sexes of Pelvicachromis taeniatus, an African cichlid with biparental brood care, prefer mating with unfamiliar close kin over nonkin, suggesting inclusive fitness advantages for inbreeding individuals. Biparental care requires synchronous behavior among parents. Since parental care is costly, there is a conflict between parents over care, which can reduce offspring fitness. Relatedness is expected to enhance cooperation among individuals. The comparison of the parental behavior of in- and outbreeding pairs showed that related parents were more cooperative and invested more than unrelated parents. Since we found no evidence for inbreeding depression, our results suggest that in P. taeniatus, inbreeding is an advantageous strategy.  相似文献   

15.
Multiple paternity and kin recognition mechanisms in a guppy population   总被引:2,自引:0,他引:2  
Hain TJ  Neff BD 《Molecular ecology》2007,16(18):3938-3946
Help directed toward kin (nepotism) is an important example of social behaviour. Such helping behaviour requires a mechanism to distinguish kin from nonkin. The prevailing kin recognition hypothesis is that when familiarity is a reliable cue of relatedness, other mechanisms of recognition will not evolve. However, when familiarity is an unreliable cue of relatedness, kin recognition by phenotype matching is instead predicted to evolve. Here we use genetic markers to show that guppies (Poecilia reticulata) from a population in a tributary of the Paria River in Trinidad are characterized by a high degree of multiple mating with 95% of broods having more than one sire and some dams having offspring sired by six males. These levels of multiple mating are the highest reported among live-bearing fishes. The mean relatedness of brood-mates was 0.36 (as compared to 0.5 for full-siblings). Therefore, familiarity does not seem to be a reliable mechanism to assess full-sibling relatedness. Using two-choice behavioural trials, we found that juveniles from this population use both phenotype matching and familiarity to distinguish kin from nonkin. However, we did not find strong evidence that the guppies use these mechanisms to form shoals of related individuals as adults, which is similar to results from other guppy populations in Trinidad. The use of both familiarity and phenotype matching is discussed in the context of the Paria River guppy population's mating system and ecology. Overall, these data provide support for the kin recognition hypothesis and increase our understanding of the evolution of kin recognition systems.  相似文献   

16.
Very few studies have investigated the occurrence of multiple paternity and sperm competition in amphibians. We studied genetic relatedness within kin groups of tadpoles of an aquatically breeding anuran Rana temporaria using allozymes. We collected samples from 52 naturally fertilized spawn clumps produced by single females at three breeding sites in two populations. We estimated relatedness (r) within kin groups, and compared the observed genotype distributions of the tadpoles (on average 23 individuals in each group) with the expected distributions based on single mating. Average relatedness over five polymorphic loci was 0.44 and 0.43 in the two populations, the latter being significantly smaller than that expected by single mating (0.5). The number of patrilines, calculated from relatedness estimates, was 1.3 in one population and 1.4 in the other. Genotype distributions deviated significantly from the expected in half of the kin groups and at all breeding sites. The results show that egg clutches of R. temporaria commonly contain multiply sired offspring. We suggest that communal breeding may affect paternity patterns in R. temporaria as well as in anurans in general.  相似文献   

17.
Advances in the genetics of reproductive isolation in Drosophila   总被引:2,自引:0,他引:2  
E Zouros 《Génome》1989,31(1):211-220
Speciation genetics is defined as the study of genetic events and processes that differentiate the probabilities that genetic material from individual members of a population will co-occur in individuals of some future generation. It follows that phenotypic attributes that contribute to this differentiation of probabilities (e.g., mating preferences, sterility, or infertility of individuals from certain types of matings) constitute the phenotype of speciation, and genetic loci that may affect these phenotypic attributes can be considered as speciation genes. The literature on genetic differences between hybridizable species of Drosophila that are responsible for morphological differences, mating preferences, hybrid inviability, and hybrid sterility are reviewed with special reference to the species pair D. mojavensis - D. arizonensis. The case for the involvement of karyotypic changes in speciation in rodents is briefly discussed. It is concluded that no major advance has been made in the speciation genetics of Drosophila since Dobzhansky initiated the field 40 years ago. Yet, the identification of several gene loci that cause hybrid inviability or sterility may open the way to the understanding of reproductive isolation at the molecular level. It is not clear whether this approach will lead to general molecular mechanisms underlying the speciation process.  相似文献   

18.
It is well established from the fossil record and phylogeographic analyses that late Quaternary climate fluctuations led to substantial changes in species' distribution, but whether and how these fluctuations resulted in phenotypic divergence and speciation is less clear. This question can be addressed through detailed analysis of traits relevant to ecology and mating within and among intraspecific lineages that persisted in separate refugia. In a biogeographic system (the Australian Wet Tropics [AWT]) with a well-established history of refugial isolation during Pleistocene glacial periods, we tested whether climate-mediated changes in distribution drove genetic and phenotypic divergence in the rainforest frog Cophixalus ornatus. We combined paleomodeling and multilocus genetics to demonstrate long-term persistence within, and isolation among, one central and two peripheral refugia. In contrast to other AWT vertebrates, the three major lineages differ in ecologically relevant morphology and in mating call, reflecting divergent selection and/or genetic drift in the peripheral isolates. Divergence in mating call and contact zone analyses suggest that the lineages now represent distinct species. The results show that climate shifts can promote genetic and phenotypic divergence and, potentially, speciation and direct attention toward incorporating adaptive traits into phylogeographic studies to better resolve the mechanisms of speciation.  相似文献   

19.
Assortative mating is critical for reproductive isolation during speciation; however, the mechanisms underlying mating preferences are often unknown. Assortative mating can be mediated through preferences for condition‐dependent and adaptive (“magic”) traits, but rigorously testing these hypotheses has been impeded by trait covariation in living organisms. We used computer‐generated models to examine the role of body shape in producing association preferences between fish populations undergoing ecological speciation in different habitat types. We demonstrate that body shape can serve as an adaptive trait (variation in head size between populations) and a condition‐dependent signal (variation in abdominal distention among individuals). Female preferences for stimuli varying in only one aspect of body shape uncovered evidence for body shape as a magic trait across population pairs, but no evidence for body shape serving as a condition‐dependent signal. Evolution of preferences only in females from one habitat type as well as stronger preferences in sympatric nonsulfidic as opposed to allopatric nonsulfidic populations suggests that reinforcement may have played a role in producing the observed patterns.  相似文献   

20.
It is still debated vigorously whether sexual selection can result in speciation without physical barriers to gene flow. In this study, we used field data and molecular methods to investigate the gold–normal color polymorphism in two endemic cichlid fish species of crater lake Xiloá, Nicaragua. We found significant assortative mating by color in both Amphilophus xiloaensis and A. sagittae . Focusing on A. xiloaensis , microsatellite allele frequencies, an assignment test, and model-based cluster analysis demonstrates significant and clear genetic differentiation ( F ST= 0.03) between gold and normal individuals in sympatry. In addition, we find genetic differentiation between all three sympatric and ecologically distinct Midas cichlid species of Lake Xiloá, A. amarillo , A. sagittae , and A. xiloaensis ( F ST= 0.03 – 0.19), and clear genetic isolation of these species from their closest relative ( A. citrinellus ) in the neighboring great lake Managua. The A. xiloaensis gold morph is genetically more distinct from the lake's other two Midas cichlid species than is A. xiloaensis -normal. Thus, we have identified sexual isolation based on color that is evident in population genetics and mate choice. Our results suggest that sexual selection through color assortative mating may play an important role in incipient sympatric speciation in Midas cichlids of Nicaragua.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号