首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

2.
R. K. Misra  R. Sands 《Plant and Soil》1992,140(2):269-278
Diurnal variation in sap flux (S) through stems of six trees, two each of Ulmus procera SALISB., Melaleuca styphelioides SM. and Prunus cerasifera EHRH. ‘Nigra’ (referred to hereafter by their generic names), were estimated from measurements of heat pulse velocities. Leaf water potential (ψ), stomatal conductance (g s ) and transpiration from leaves (T) of all replicate trees were measured at 1300–1500h, once during the summer. On two separate occasions measurements were made of S, ψ, (g s ) and T for one each of Ulmus and Melaleuca trees to study diurnal variations in these parameters. A 12×12 m2 area around each tree was kept covered to simulate the condition of trees growing on pavements adjacent to residential properties. Sap flux for these tree species was in the order Melaleuca>Ulmus>Prunus. It is suggested that the smaller canopy and sapwood area in Prunus compared to the other two species is responsible for lower water potential and lower transpiration rate than the other species. Detailed analysis of the diurnal variation in sap flux and water relation of leaves of Melaleuca and Ulmus indicated sap flux of Melaleuca to be greater than that of Ulmus at the same transpiration rate per unit leaf area although the sapwood area of the two species was marginally different. This may have been due either to the difference in canopy conductance or in leaf area between the two species. With the assumption that sap flux closely resembles the rate of soil water extraction for both species, results indicate that Melaleuca is likely to extract soil water at a higher rate than Ulmus and hence is capable of causing greater shrinkage and soil movement than Ulmus.  相似文献   

3.
雷州半岛尾叶桉和湿加松人工林的蒸腾耗水规律   总被引:2,自引:0,他引:2  
为正确认识大径材桉树及湿加松耗水规律,为地区人工林树种选择、栽培及抚育提供指导,应用TDP热扩散探针技术,对10年生尾叶桉和湿加松树干液流进行连续监测,并同步测定各气象因子,分析了雷州半岛地区尾叶桉和湿加松蒸腾耗水的日变化特征和季节变化规律,并与气象因子建立了相关模型。结果表明:尾叶桉和湿加松边材液流均表现出典型的昼高夜低的单峰型日变化特征,各月平均液流速率不同,且旱雨季差异显著;其中峰值尾叶桉雨季(0.127 cm/min)和旱季(0.096 cm/min)分别是湿加松雨季和旱季的1.30倍和1.57倍;日平均液流速率尾叶桉雨季(0.045 cm/min)和旱季(0.033 cm/min)分别是湿加松雨季和旱季的1.27倍和1.54倍;启动时间和迅速下降时间雨季两树种间差异不大,但旱季尾叶桉要提前湿加松约1—1.5 h启动,并晚0.5—1 h迅速下降。影响两树种边材液流速率的主要气象因子相同。尾叶桉人工林年平均单株日耗水量为12.79 L/d,是湿加松的1.33倍,林分蒸腾耗水量尾叶桉(582.16 mm)和湿加松(483.24 mm),分别占同期年降雨量的34.2%和28.4%,且两树种旱雨季蒸腾耗水量均雨季显著大于旱季。  相似文献   

4.
Cech PG  Pepin S  Körner C 《Oecologia》2003,137(2):258-268
We enriched in CO2 the canopy of 14 broad-leaved trees in a species-rich, ca. 30-m-tall forest in NW Switzerland to test whether elevated CO2 reduces water use in mature forest trees. Measurements of sap flux density (JS) were made prior to CO2 enrichment (summer 2000) and throughout the first whole growing season of CO2 exposure (2001) using the constant heat-flow technique. The short-term responses of sap flux to brief (1.5–3 h) interruptions of CO2 enrichment were also examined. There were no significant a priori differences in morphological and physiological traits between trees which were later exposed to elevated CO2 (n=14) and trees later used as controls (n=19). Over the entire growing season, CO2 enrichment resulted in an average 10.7% reduction in mean daily JS across all species compared to control trees. Responses were most pronounced in Carpinus, Acer, Prunus and Tilia, smaller in Quercus and close to zero in Fagus trees. The JS of treated trees significantly increased by 7% upon transient exposure to ambient CO2 concentrations at noon. Hence, responses of the different species were, in the short term, similar in magnitude to those observed over the whole season (though opposite because of the reversed treatment). The reductions in mean JS of CO2-enriched trees were high (22%) under conditions of low evaporative demand (vapour pressure deficit, VPD <5 hPa) and small (2%) when mean daily VPD was greater than 10 hPa. During a relatively dry period, the effect of elevated CO2 on JS even appeared to be reversed. These results suggest that daily water savings by CO2-enriched trees may have accumulated to a significantly improved water status by the time when control trees were short of soil moisture. Our data indicate that the magnitude of CO2 effects on stand transpiration will depend on rainfall regimes and the relative abundance of the different species, being more pronounced under humid conditions and in stands dominated by species such as Carpinus and negligible in mono-specific Fagus forests.  相似文献   

5.
The biomass production of three common aquatic macrophytes,viz. Azolla pinnata, Eichhornia crassipes andHydrilla verticillata, was high at the prevailing environmental conditions and by the enriched water of River Ganga. The biomass production ofAzolla andEichhornia was positively correlated with the orthophosphate phosphorus and nitrate-nitrogen concentrations of the enriched water. The biomass ofAzolla andHydrilla was positively correlated with the electrical conductivity of the water. The average yield of crude protein was highest in Azolla (8,520 kg.ha–1.yr–1), and somewhat lower inEichhornia (6,520 kg.ha–1.yr–1). The annual biogas production was highest inEichhornia (44,381 litres), and somewhat lower inAzolla (17,186 litres).  相似文献   

6.
Melvin T. Tyree  Shudong Yang 《Planta》1990,182(3):420-426
Water-storage capacity was measured inThuja occidentalis L.,Tsuga canadensis (L.) Carr., andAcer saccharum Marsh. during the dehydration of stem segments 1.5–2.5 cm in diameter. Stem water potential was measured with a temperature-corrected stem hygrometer and cavitations were detected acoustically. Water loss was measured by weight change. Dehydration isotherms consistently displayed three phases. The first phase, from water potential (Ψ) 0 to about −0.2 MPa, had a high capacitance (C>0.4kg water lost· (1 of tissue)−1· MPa−1) and we have attributed this high C to capillary water as defined by Zimmermann (1983, Xylem structure and the ascent of sap, Springer-Verlag). The second phase from Ψ=−0.5 to about −2.0 had the lowest C values (<0.02 kg·l−1·MPa−1) and was accompanied by a few cavitation events. This phase may have been a transition zone between capillary storage and water released by cavitation events as well as water drawn from living cells of the bark. The third phase also had a high C (about 0.07–0.22kg·l−1·MPa−1) and was associated with many cavitation events while Ψ declined below about −2.5 MPa; we presume the high capacitance was the consequence of water released by cavitation events. We discuss the ecological adaptive advantage of these three phases of water-storage in trees. In moist environments, water withdrawn from capillary storage may be an important fraction of transpiration, but may be of little adaptive advantage. For most of the growth season trees draw mainly on elastic storage, but stem elastic storage is less than leaf elastic storage and therefore unlikely to be important. In very dry environments, water relased by cavitation events might be important to the short-term survival of trees.  相似文献   

7.
Seasonal courses of leaf CO2 gas exchange in a growing season were examined in saplings ofThujopsis dolabrata var.hondai andQuercus mongolica var.grosseserrata in a cool temperate deciduous forest. Between the two tree species there were no large differences in the light compensation point of leaf photosynthesis, except for the season of new leaf expansion. However, light-saturated rates of net photosynthesis were obviously high inT. dolabrata var.hondai. EvergreenT. dolabrata var.hondai saplings had large photosynthetic production in two seasons, before the emergence of new foliage and after foliage fall of the overstory deciduous trees, because of the significantly high solar radiant energy penetrating under the forest canopy during the seasons. Saplings of deciduousQ. mongolica var.grosseserrata were heavily shaded throughout the growing season by foliage of the overstory trees, which resulted in a low daily surplus production. The annual surplus production of leaves in the growing season was estimated to be 2300 mmol CO2 m−2 inT. dolabrata var.hondai and −100 mmol CO2 m−2, slightly negative, inQ. mongolica var.grosseserrata. These results supported the high survivability ofT. dolabrata var.hondai saplings and the high mortality ofQ. mongolica var.grosseserrata in the deciduous forest.  相似文献   

8.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   

9.
黄土高原地区植被建设已达到土壤水分承载力的阈值,需要对现有林分进行结构优化并提升其生态功能。不合理的林分密度是导致黄土丘陵区刺槐林土壤干化、生长衰退的主要原因之一。疏伐可以优化林分结构,并能够通过控制蒸腾耗水来调控土壤水分,是促进刺槐林可持续生长的有效手段。疏伐对黄土丘陵区刺槐林蒸腾有何影响,目前并不清楚。研究基于树干液流法估算了4个不同疏伐强度(样地1:52%、样地2:48%、样地3:35%、样地4:未疏伐)下刺槐单株尺度的液流速率与林分尺度的日平均蒸腾量,并分析了不同时间尺度下液流速率与环境因子的关系,以阐明疏伐对黄土丘陵区刺槐林蒸腾的影响。结果表明:(1) 单株尺度刺槐蒸腾速率(即液流速率)随疏伐强度减小(林分密度增大)呈现下降趋势(样地1:0.53 kg cm-2 d-1、样地2:0.41 kg cm-2 d-1、样地3:0.31 kg cm-2 d-1、样地4:0.33 kg cm-2 d-1);(2) 观测期林分尺度日平均蒸腾量随疏伐强度减小呈现上升趋势(样地1:0.90 mm/d、样地2:1.18 mm/d、样地3:1.04 mm/d、样地4:1.44 mm/d);(3) 在半小时尺度与日尺度上,各样地液流速率与环境因子的关系没有显著差异,半小时尺度单株液流速率均与太阳辐射相关性最高(相关系数0.883-0.908),液流速率日变化过程与环境因子日变化过程存在时滞现象;日尺度单株液流速率与饱和水汽压亏缺相关性最高(相关系数0.843-0.913),样地间日尺度单株液流速率的差异性随着饱和水汽压亏缺增大而增大。研究结果初步反映了疏伐导致的林分密度变化对刺槐蒸腾的影响,将为黄土丘陵区刺槐林的结构改造、功能提升和土壤水分调控提供理论支持。  相似文献   

10.
During 1985–1990Coscinodiscus concinnus andCoscinodiscus granii from the Oosterschelde were infected by the marine fungusLagenisma coscinodisci, although not every year with the same intensity. Infected cells were only observed during the period July–October at water temperatures between 13.2 and 20.2°C. In 1986 and 1987 the course of the infection withL. coscinodisci inC. concinnus andC. granii, was recorded at three stations. The highest infection percentages varied between 22.2 and 58.3% inC. concinnus and between 7.1 and 41.9% inC. granii. It is concluded that the water temperature may play an important role in the appearance ofL. coscinodisci inC. concinnus andC. granii and that silicate limitation is of minor importance. Finally it is discussed that the infection was not of great importance for the phytoplankton community in the Oosterschelde.  相似文献   

11.
Simultaneous field measurements of transpiration and sap flow were performed on short-rotation Salix viminalis trees ranging in diameter from 1.5 to 3.5 cm (2-year-old shoots on 8-year-old stumps). Transpiration was measured using an open-top ventilated chamber enclosing the whole foliage of a tree. Sap flow was measured using a tree-trunk heat balance (THB) technique with a constant temperature difference and variable heat input. Both the instantaneous and daily values of water flux measured by the two absolute techniques agreed well with a difference of up to about 5%. In July, the hourly transpiration reached a maximum of about 0.2 kg m–2 (leaf area) or 0.45 kg tree–1, whereas maximum daily integrals reached 4 kg tree–1. The response of sap flow rate to abrupt flux change when inducing emboli by cutting-off the stem was very rapid: the registered signal dropped by 85% within 10 min for a specimen with a projected leaf area of 2 m2. For S. viminalis trees, transpiration was linearly correlated with stem cross-sectional area and with leaf area.  相似文献   

12.
The contribution of stored water to transpiration in Scots pine   总被引:19,自引:7,他引:12  
Abstract. The amount of water available diurnally and annually from the storage tissues was measured in plots of Scots pine trees with four different population densities (608–3281 trees per ha) in a 40-year-old plantation in north eastern Scotland. The water storage capacity of stems, branches, and foliage was estimated from equations derived from harvested trees and measurements of relative water content. On average 64% of the water considered to be available for transpiration was in the stem sapwood and less than 5% in the phloem, cambium and foliage. Trees on the plot with the highest population density had a water storage capacity of 212 m3 ha?1 (21.2 mm), whereas those on the plot with the lowest population density had a water storage capacity of 124 m3 ha?1 (12.4 mm). The utilization of stored water in transpiration was estimated from seasonal and diurnal measurements of the relative water content of foliage and stem sapwood. The largest change in sapwood relative water content over a 2-week period was a reduction of 27% corresponding to extraction from the sapwood of 2.5 and 5.1 mm of water on the plots with the lowest and highest population densities, respectively. In rapidly changing weather conditions 1–1.5 mm day?1 could be removed from the stem sapwood alone. Since transpiration rarely exceeded 3 mm day?1, 30–50% of the transpired water was extracted from water stored in the stem sapwood over short periods. Trees on the plot with the lowest population density occasionally had slightly higher relative water contents and exhibited larger diurnal fluctuations than those on the plot with the highest population density, possibly because of differences in wood density. Sapwood water content was generally lower at times of high transpiration rate and in winter during freezing conditions. Resaturation took several months to complete during the winter.  相似文献   

13.
Eucalyptus L'Héritier (Myrtaceae: Leptospermoideae) species are native to the Austro-Malaysian region, but have been widely planted in temperate and subtropical regions around the world. In most regions whereEucalyptus have been imported, the Eucalyptus Longhorned Borer (Phoracantha semipunctata F.) (Coleoptera: Cerambycidae) has been accidently introduced. Larvae of the beetle bore through the bark and mine along the cambium of stressed trees, usually killing their host. We report here the relative susceptibilities of 12Eucalyptus species in two mixed-species plantations in California, USA. These trees were stressed by water deficit resulting from a prolonged drought.Eucalyptus species that appeared resistant to the borer includedE. camaldulensis Dehnhardt,E. cladocalyx F. Muller,e. sideroxylon A. Cunn. ex Woolls, andE. trabutii (anE. camaldulensis hybrid). Species that were more susceptible to attack wereE. diversicolor F. Mueller,E. globulus LaBillardière,E. grandis Hill ex Maiden,E. nitens (Deane & Maiden),E. saligna Sm., andE. viminalis LaBillardière. Survival of trees was influenced by fine-scale moisture variation resulting from slope and irrigation effects. Resistance characteristics of theseEucalyptus species did not correlate with taxonomic relatedness or bark characteristics, but did correspond to drought tolerance traits in their native habitat.Eucalyptus species that were resistant to attack byP. semipunctata were those that are most tolerant of drought in Australia.  相似文献   

14.
Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non‐water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short‐ and long‐term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water‐use efficiency in control and fertilized stands. Short‐term effects were assessed by comparing sap flux before and after fertilizer application. Long‐term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short‐term response, total water use in fertilized plots increased from 265 to 487 mm yr?1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short‐term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C?1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr?1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long‐term plots. In contrast to the short‐term response, the long‐term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.  相似文献   

15.
Water relations of stem succulent trees in north-central Baja California   总被引:6,自引:0,他引:6  
Summary Water relations of several stem succulent trees were measured in north-central Baja California in comparisons to other growth forms in the same habitat. Our research concentrated on three stem succulent species (Idria collumnaris, Pachycormus discolor and Bursera microphylla) each with a different succulent stem morphology. The stem succulent trees had 1 to 4 kg H2O/m3 of trunk while the other trees and shrubs in the same habitat had 0.6 to 0.8 kg H2O/m3. The diurnal and seasonal variation in leaf water potential was small for the stem succulent species in comparison to deciduous and evergreen species as a consequence of the stem-water, buffering capacity. In addition, the leaf conductance of the stem succulent species was low (60 mmol m–2 s–1) and yet, the leaf conductance decreased through the day similar to adjacent evergreen and deciduous species. The leaves of the stem succulent trees lost turgor at low saturated water deficits (0.06 to 0.14), had comparatively high osmotic potentials, and high values of elastic modulus in comparison to adjacent evergreen and deciduous species. The stem acts as an important buffering mechanism allowing for the maintenance of leaf turgor in these stem succulent trees. The low transpiration rates of the stem succulent trees may be a mechanism to minimize leaf saturated water deficit and extend leaf longevity.  相似文献   

16.
Abstract An electrical analogue describing the phase and amplitude relations between transpiration, water potential and stem shrinkage for trees was developed. Observations of shrinking and swelling at various heights up a Pinus radiata tree were obtained over several weeks in summer and autumn. The relative amplitude in shrinkage increased by a factor of two up the stem, but phase lags were small. The data obtained were used in conjunction with the electrical analogue of the How pathway to obtain an estimate of the relative magnitude of the capacitance of the living bark and the sapwood, and to predict phase lags between transpiration and leaf water potential, and lags in transpirational flux up the stem. The results suggest that if water potentials recover by dawn, phase lags in water potential down tree stems arc small and that the exchange between water stored in the sapwood and the transpiration stream is irreversible over the diurnal time scale.  相似文献   

17.
Canopy transpiration in a chronosequence of Central Siberian pine forests   总被引:4,自引:0,他引:4  
Tree transpiration was measured in 28, 67, 204 and 383‐y‐old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130‐y‐old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28‐y‐old stand) and 1.6 for stands older than 67‐y. Stand xylem area at 1.3 m height increased from 4 cm2 m?2 (28‐y) to 11.5 cm2 m?2 (67‐y) and decreased again to 7 cm2 m?2 in old stands. Above‐ground living biomass increased from 1.5 kg dry weight m?2 (28‐y) to 14 kg dry weight m?2 (383‐y). Day‐to‐day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree‐to‐tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m?2 s?1) and canopy transpiration (1.5 mm d?1) were reached in the 67‐y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d?1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = ? 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.  相似文献   

18.
Summary A method for determining the mass flow rate of xylem water in thin stems under natural field conditions is presented. Diurnal courses of xylem water flow and stomatal conductance of the vines Entadopsis polystachya, Cyclanthera multifoliolata, and Serjania brachycarpa were examined in a tropical deciduous forest on the west coast of Mexico. E. polystachya (leaf area 23.6 m2) had a maximum water flow rate of 6.50 kg h-1 or 1.44 kg cm-2 stem basal area h-1; daily water use was 2.00 kg m-2 leaf area day-1. S. brachycarpa (leaf area 4.5 m2) and C. multifoliolata (leaf area 3.6 m2) had a maximum water flow rate of 0.72 and 0.19 kg h-1 or 0.63 and 0.92 kg cm-2 stem basal area h-1. Daily water use was 1.26 and 0.39 kg m-2 leaf area day-1, respectively. The daily courses of xylem water flow were strongly influenced by the orientation of the leaf area to irradiance and its intensity. While leaves of E. polystachya had a constant high stomatal conductance during the day, S. brachycarpa had a maximum stomatal opening in the morning followed by continuous closure during the rest of the day. In contrast to the woody species, the herbaceous C. multifoliolata exhibited a strong midday depression of stomatal conductance and wilting of its leaves. The leaf biomass accounted for 8% (Entadopsis), 16% (Serjania), and 23% (Cyclanthera) of above-ground biomass. The relation of sapwood area to leaf area supplied (Huber value) was 0.19 (Entadopsis), 0.18 (Serjania), and 0.06 (Cyclanthera) cm2 m-2  相似文献   

19.
In NW Patagonia, South America, natural shrublands and mixed forests of short Nothofagus antarctica (G. Forst.) Oerst. trees are currently being replaced by plantations with Pseudotsuga menziesii (Mirb) Franco. This land use change is controversial because the region is prone to drought, and replacement of native vegetation by planted forests may increase vegetation water use. The goal of this study was to examine the physiological differences, especially the response of water flux and canopy conductance to microclimate, that lead to greater water use by exotic trees compared to native trees. Meteorological variables and sapflow density of P. menziesii and four native woody species were measured in the growing season 2005–2006. Canopy conductance (gc) was estimated for both the exotic (monoculture) and native (multi-species) systems, including the individual contributions of each species of the native forest. Sapflow density, stand-level transpiration and gc were related to leaf-to-air vapor pressure difference (VPD). All native species had different magnitudes and diurnal patterns of sapflow density compared to P. menziesii, which could be explained by the different gc responses to VPD. Stomatal sensitivity to VPD suggested that all native species have a stronger stomatal control of leaf water potential and transpiration due to hydraulic limitations compared to P. menziesii. In conclusion, differences in water use between a P. menziesii plantation and a contiguous native mixed forest of similar basal area could be explained by different gc responses to VPD between species (higher sensitivity in the native species), in addition to particular characteristics of the native forest structure.  相似文献   

20.
Adults of the wood-boring beetlePhoracantha semipunctata F. showed variability in their attractiveness to five varieties ofEucalyptus when presented with an array of logs in a natural setting. Logs of two host varieties (E. camaldulensis Dehnhardt and the hybridE. trabutii) attracted two to three times more adult beetles than did logs of other host species (E. cladocalyx F.,E. grandis Hill ex Maiden andE. tereticornis Small). In the field, high oviposition rates byP. semipunctata adults resulted in severe competition among larvae. Larval survivorship was low in field logs ofE. trabutii and high inE. cladocalyx logs, although these hosts were the most and least attractive to the adult beetles, respectively. However, when logs were hand infested at low larval densities, survivorship ofP. semipunctata larvae was highest in logs of bothE. camaldulensis andE. trabutii. These findings suggest that adult beetles in the field were most attracted to those logs ofEucalyptus species that represented the highest quality hosts for their progeny under conditions of reduced larval competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号