首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of HeLa cell cultures with human interferon-gamma (IFN-gamma) increased the binding of radioiodinated human tumor necrosis factor (TNF) to specific cell surface receptors (TNF-R). IFN-gamma also produced a proportionate increase in receptor-mediated endocytosis of TNF. TNF-R expression was significantly increased after 6 h of exposure to IFN-gamma (100 units/ml), and it remained elevated in the continuous presence of IFN-gamma for at least 20 h. Incubation of cells with IFN-gamma in the presence of cycloheximide, followed by treatment with actinomycin D and reversal of the inhibition of protein synthesis, also resulted in increased TNF-R expression as compared to cultures subjected to the same treatments in the absence of IFN-gamma. These results suggest that IFN-gamma can directly stimulate accumulation of the mRNA for TNF-R and that TNF-R is among the cellular proteins whose synthesis is increased by IFN-gamma.  相似文献   

2.
Tumor necrosis factor is a potent agent possessing diverse biological functions. We investigated the effects of intravenous administration of human recombinant tumor necrosis factor (TNF) on immune cell populations in CBA/J mice. The animals developed a significant lymphopenia and neutrophilia both reaching a maximum at 4 hours post-injection with a trend towards resolution to normal values by 6 hours. The lymphopenia was both relative and absolute. Similarly, the neutrophilia was both relative and absolute and was due to the presence of both immature and mature neutrophils. As the neutrophilia and lymphopenia occurred concomitantly, there was no difference at any time point in the total number of peripheral blood white cells. Extensive controls were done to rule out LPS contamination in the TNF preparation. These data demonstrate the potent effects of intravenous administration of human recombinant tumor necrosis factor on peripheral blood constituents.  相似文献   

3.
The effect of human tumor necrosis factor (TNF) on the permeability properties of liposomes containing phosphatidylserine at pH 5-6, as demonstrated by the calcein efflux. However, it did not induce any permeability change in such liposomes at neutral pH. The TNF-induced calcein efflux was also observed when an other acidic lipid was used as a component of the liposomes, i.e., phosphatidic acid or dicetyl phosphate. On the other hand, liposomes composed of neutral phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin showed little increases in permeability when incubated with TNF above pH 5.0. The TNF-induced permeability change was inhibited by the addition of polyaspartic acid, while it was not affected by the presence of 0.5 mM calcium ions. These data suggest that the negative charges on the liposomal surface trigger the interaction between TNF and liposomes. However, when the pH of the reaction mixture was decreased to 4.5, TNF-induced calcein efflux was observed even from neutral liposomes. When TNF was incubated with 8-anilinonaphthalene-1-sulfonic acid, the fluorescence intensity of this fluorophore increased with a decrease in the pH of the solution from 7 to 5, and a drastic increase in fluorescence was observed at pH 4.5. These data suggest that the hydrophobic region of TNF is also important for liposomal damage. Furthermore, the potencies of TNF and its derivative as to the induction of the permeability change paralleled their cytotoxic effects on mouse L929 cells, suggesting that the effect of TNF on liposomal membranes is related to its biological action.  相似文献   

4.
5.
TNF-alpha alone or in combination with IFN-gamma differentially affects the proliferation and differentiation of the human leukemic cell line U937 and two derivatives C27 and G3. All three cell lines express similar numbers of functional, high affinity receptors for both TNF-alpha and IFN-gamma. In C27 and G3 cells, TNF-alpha as well as IFN-gamma induced changes in steady state levels of specific mRNA, which appear to be associated with TNF-alpha and IFN-gamma diverse effects on cell growth and differentiation. Constitutive differences in membrane phosphorylation patterns suggest that altered transduction of TNF-alpha signals may account for the differential response of these three cell lines. Several lines of evidence indicate that C27 and G3 cells, when compared with parental U937 cells represent discretely higher stages of monocytic differentiation, suggesting that cellular differentiation may contribute to the development of resistance to the action of TNF-alpha.  相似文献   

6.
7.
Nagoshi Y  Kuwasako K  Cao YN  Imamura T  Kitamura K  Eto T 《Peptides》2004,25(7):1115-1121
We examined the effects of tumor necrosis factor (TNF)-alpha on the expression and functionality of adrenomedullin (AM) receptors in cultured human coronary artery smooth muscle cells. Analysis of real-time quantitative polymerase chain reactions showed that these cells abundantly express two AM receptors comprised of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 1 (RAMP1) or RAMP2. TNF-alpha induced time- and dose-dependent decreases in the expression of CRLR and RAMP1/2 mRNAs, thereby diminishing AM-evoked cAMP production. The suppression of these three mRNAs was unaffected by inhibiting NOS, protein kinase G, protein kinase A, superoxide formation or NF-kappaB activation.  相似文献   

8.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid-soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   

9.
There is sufficient evidence to prove that tumor necrosis factor alpha (TNFalpha) modulates bovine corpus luteum (CL) function. Our previous study demonstrated that functional TNFalpha receptors are present on luteal cells in bovine CL throughout the estrous cycle. The purpose of the present study was to identify the presence of functional TNFalpha receptors on the microvascular endothelial cells derived from developing bovine CL. TNFalpha receptors were analyzed by a radioreceptor assay using (125)I-labeled TNFalpha on two types of cultured endothelial cells. One has a cobblestone appearance (CS cells), and the other has a tube-like structure (TS cells). (125)I-Labeled TNFalpha binding was maximal after incubation for 30 h at 37 degrees C, and the specificity of binding was confirmed. A Scatchard analysis showed the presence of two binding sites (high- and low-affinity) for TNFalpha receptors on both CS and TS cells. The dissociation constant (K(d)) values and concentrations of the high-affinity binding sites for TNF receptors were similar for CS and TS cells. However, K(d) values and concentrations of the low-affinity binding sites in CS cells were significantly higher than those in TS cells (P < 0.05 or lower). The expression of TNF receptor type 1 (TNF-RI) mRNA was determined in both cell types. Furthermore, TNFalpha significantly stimulated prostaglandin E(2) and endothelin-1 secretion by both CS and TS cells (P < 0.05 or lower). These results indicate the presence of two types of TNF receptors and the expression of TNF-RI mRNA in the endothelial cells derived from bovine CL, and suggest that TNFalpha plays two or more roles in regulating the secretory function of the endothelial cells.  相似文献   

10.
Mitochondrial production of reactive oxygen species (ROS) is widely reported as a central effector during TNF-induced necrosis. The effect of a family of mitochondria-targeted antioxidants on TNF-induced necrosis of L929 cells was studied. While the commonly used lipid–soluble antioxidant BHA effectively protected cells from TNF-induced necrosis, the mitochondria-targeted antioxidants MitoQ3, MitoQ5, MitoQ10 and MitoPBN had no effect on TNF-induced necrosis. Since BHA also acts as an uncoupler of mitochondrial membrane potential, two additional uncouplers were tested. FCCP and CCCP both provided dose-dependent inhibition of TNF-induced necrosis. In conclusion, the generation of mitochondrial ROS may not be necessary for TNF-induced necrosis. Instead, these results suggest alternative mitochondrial functions, such as a respiration-dependent process, are critical for necrotic death.  相似文献   

11.
Interleukin (IL)-6 gene induction was studied in response to treatment with Tumor Necrosis Factor (TNF) in the sensitive murine L929 cell line. Under conditions where TNF-mediated cytotoxicity was either increased or decreased, depending on addition of activators or inhibitors, we found that the TNF-induced IL6 gene expression was likewise enhanced or repressed. We conclude that the signal (or part of the signals) going to the nucleus and responsible for gene activation is conducted along the reaction mechanism leading to cellular toxicity.  相似文献   

12.
Focal adhesion kinase (FAK) is widely involved in important cellular functions such as proliferation, migration, and survival, although its roles in immune and inflammatory responses have yet to be explored. We demonstrate a critical role for FAK in the tumor necrosis factor (TNF)-induced activation of nuclear factor (NF)-kappaB, using FAK-deficient (FAK-/-) embryonic fibroblasts. Interestingly, TNF-induced interleukin (IL)-6 production was nearly abolished in FAK-/- fibroblasts, whereas a normal level of production was obtained in FAK+/- or FAK+/+ fibroblasts. FAK deficiency did not affect the three types of mitogen-activated protein kinases, ERK, JNK, and p38. Similarly, TNF-induced activation of activator protein 1 or NF-IL-6 was not impaired in FAK-/- cells. Of note, TNF-induced NF-kappaB DNA binding activity and activation of IkappaB kinases (IKKs) were markedly impaired in FAK-/- cells, whereas the expression of TNF receptor I or other signaling molecules such as receptor-interacting protein (RIP), tumor necrosis factor receptor-associated factor 2 (TRAF2), IKKalpha, IKKbeta, and IKKgamma was unchanged. Also, TNF-induced association of FAK with RIP and subsequent association of RIP with TRAF2 were not observed, resulting in a failure of RIP to recruit the IKK complex in FAK-/- cells. The reintroduction of wild type FAK into FAK-/- cells restored the interaction of RIP with TRAF2 and the IKK complex and allowed recovery of NF-kappaB activation and subsequent IL-6 production. Thus, we propose a novel role for FAK in the NF-kappaB activation pathway leading to the production of cytokines.  相似文献   

13.
Tumor necrosis factor (TNF)-induced cell death in the fibrosarcoma cell line L929 occurs independently of caspase activation and cytochrome c release. However, it is dependent on mitochondria and is characterized by increased production of reactive oxygen intermediates that are essential to the death process. To identify signaling molecules involved in this TNF-induced, reactive oxygen intermediate-dependent cell death pathway, we performed a comparative study by two-dimensional gel electrophoresis of phosphoproteins from a mitochondria-enriched fraction derived from TNF-treated and control cells. TNF induced rapid and persistent phosphorylation of the phosphorylation-responsive regulator of the microtubule (MT) dynamics, oncoprotein 18 (Op18). By using induced overexpression of wild type Op18 and phosphorylation site-deficient mutants S25A/S38A and S16A/S63A in L929 cells, we show that TNF-induced phosphorylation on each of the four Ser residues of Op18 promotes cell death and that Ser(16) and Ser(63) are the primary sites. This hyperphosphorylation of Op18 is known to completely turn off its MT-destabilizing activity. As a result, TNF treatment of L929 cells induced elongated and extremely tangled microtubules. These TNF-induced changes to the MT network were also observed in cells overexpressing wild type Op18 and, to a lesser extent, in cells overexpressing the S25A/S38A mutant. No changes in the MT network were observed upon TNF treatment of cells overexpressing the S16A/S63A mutant, and these cells were desensitized to TNF-induced cell death. These findings indicate that TNF-induced MT stabilization is mediated by hyperphosphorylation of Op18 and that this promotes cell death. The data suggest that Op18 and the MT network play a functional role in transduction of the cell death signal to the mitochondria.  相似文献   

14.
15.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

16.
Tumour necrosis factor-alpha (TNF) has a variety of cellular effects including apoptotic and necrotic cytotoxicity. TNF activates a range of kinases, but their role in cytotoxic mechanisms is unclear. HeLa cells expressing elevated type II 75 kDa TNF receptor (TNFR2) protein, analysed by flow cytometry and Western analysis, showed altered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK; but not MAPK) protein content and activation. There was greater JNK activation, but reduced p38MAPK activation in dying cells compared to those still to enter TNF-induced apoptosis. Moreover, cells displaying more rapid apoptosis possess higher levels of type I 55 kDa TNFR1 receptor isoform, but less TNFR2. These findings reveal differential kinase activation in TNF-induced apoptotic death.  相似文献   

17.
Arachidonic acid (AA) generated by cytosolic phospholipase A2 (cPLA2) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA2-deficient MCF-7S1 cells expressing ectopic cPLA2 or cPLA2-deficient immortalized murine embryonic fibroblasts, we showed that cPLA2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damage-associated inflammation.  相似文献   

18.
Human rTNF-alpha stimulates the metabolism of murine peritoneal macrophages as demonstrated by an increased consumption of arginine and an increased release of L-ornithine. This TNF-mediated effect is augmented by several substances that raise the intracellular concentration of cAMP, including PGE2, cholera toxin, and dibutyryl-cAMP. TNF also stimulates the endogenous production of PGE2 in cultures of peritoneal macrophages. The addition of the cyclo-oxygenase inhibitor, indomethacin, suppresses the TNF-mediated metabolic activation of macrophages, and this suppressive effect of indomethacin is overcome if exogenous PGE2 or cholera toxin is added to the culture. Taken together, the experiments indicate that the TNF-induced production of PGE2 and the PGE2-induced increase of the intracellular cAMP concentration are essential elements of an auto-regulatory loop that controls the magnitude of the TNF-mediated effect in the macrophage.  相似文献   

19.
Purified human tumor necrosis factor (TNF) was iodinated to high specific activity with good retention of its biological activity, as determined by the cytotoxic titer on murine L929 cells. The binding of 125I-TNF to L929 and human HeLa S2 cells grown in monolayer was initially measured, but high levels of nonspecific binding were observed. Specific binding to high affinity receptors of HeLa S2 cells grown in suspension culture was demonstrated by competitive displacement experiments and analysis of the binding data with the LIGAND program. A KD of 2 X 10(-10) M and 6000 receptors/cell were calculated in this way. These observations provide the first direct evidence for a cellular receptor for TNF. The cell-bound 125I-TNF was internalized at 37 degrees C, presumably by receptor-mediated endocytosis, and subsequently degraded to acid-soluble products. Three lines of human lymphoblastoid cells were examined for sensitivity to the cytostatic effect of TNF and for the presence of high affinity receptors. Daudi and Raji cells were insensitive to TNF and showed very few specific binding sites when incubated with 125I-TNF. Jurkat cells were growth-inhibited by TNF and showed a significantly greater number of specific binding sites than the other lymphoblastoid cells. These findings suggest that the sensitivity of some cell lines to the biological effects of TNF may be correlated with the presence of a relatively high number of receptors for this factor.  相似文献   

20.
Kim JR  Lee SM  Cho SH  Kim JH  Kim BH  Kwon J  Choi CY  Kim YD  Lee SR 《FEBS letters》2004,567(2-3):189-196
Stimulation of cells with tumor necrosis factor-alpha (TNF-alpha) results in the increase in generation of H(2)O(2) in mitochondria that leads to apoptosis. The effect of H(2)O(2) produced by TNF-alpha on the redox status of selenocysteine (SeCys) residue essential for mitochondrial thioredoxin reductase (TrxR2) was investigated in HeLa cells. TNF-alpha caused accumulation of oxidized TrxR2 with a thioselenide bond. The conditional induction of SeCys-deficient TrxR2 resulted in the increased production of H(2)O(2) and apoptosis. These results suggest that the SeCys residue of TrxR2 plays a critical role in cell survival by serving as an electron donor for Trx-II and subsequent peroxiredoxin-III, which is a primary line of defense against H(2)O(2) in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号