共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Haftek Z Morvan-Dubois G Thisse B Thisse C Garrone R Le Guellec D 《Gene expression patterns : GEP》2003,3(3):351-354
Endostatin, located in the NC1 domain of the collagen XVIII, is believed to inhibit the migration and proliferation of endothelial cells (Fed. Am. Soc. Exp. Biol. J. 15 (2001) 1044) and to play a role in axon guidance in Caenorhabditis elegans (J. Cell Biol. 152 (2001) 1219). Zebrafish is an attractive vertebrate model to determine the role of endostatin and the entire molecule of collagen XVIII during vertebrate development. Therefore, we have investigated the expression pattern of COL18A1 in zebrafish embryos from the segmentation to the hatching period stages. 相似文献
3.
4.
Wolfgang Hofmeister Christine A. Devine Brian Key 《Gene expression patterns : GEP》2013,13(3-4):126-132
Axon pathfinding in the neuroepithelium of embryonic brain is dependent on a variety of short and long range guidance cues. Heparan sulfate proteoglycans such as syndecans act as modulators of these cues and their importance in neural development is highlighted by their phylogenetic conservation. In Drosophilia, a single syndecan is present on the surface of axon growth cones and is required for chemorepulsive signalling during midline crossing. Understanding the role of syndecans in the vertebrate nervous system is challenging given that there are four homologous genes, syndecans 1–4. We show here that syndecans 2–4 are expressed in the zebrafish embryonic brain during the major period of axon growth. These genes show differing expression patterns in the brain which provides putative insights into their functional specificity. 相似文献
5.
6.
7.
Faraco JH Appelbaum L Marin W Gaus SE Mourrain P Mignot E 《The Journal of biological chemistry》2006,281(40):29753-29761
Hypocretins/orexins are neuropeptides involved in the regulation of sleep and energy balance in mammals. Conservation of gene sequence, hypothalamic localization of cell bodies, and projection patterns in adult zebrafish suggest that the architecture and function of the hypocretin system are conserved in fish. We report on the complete genomic structure of the zebrafish and Tetraodon hypocretin genes and the complete predicted hypocretin protein sequences from five teleosts. Using whole mount in situ hybridization, we have traced the development of hypocretin cells in zebrafish from onset of expression at 22 h post-fertilization through the first week of development. Promoter elements of similar size from zebrafish and Tetraodon were capable of driving efficient and specific expression of enhanced green fluorescent protein in developing zebrafish embryos, thus defining a minimal promoter region able to accurately mimic the native hypocretin pattern. This enhanced green fluorescent protein expression also revealed a complex pattern of projections within the hypothalamus, to the midbrain, and to the spinal cord. To further analyze the promoter, a series of deletion and substitution constructs were injected into embryos, and resulting promoter activity was monitored in the first week of development. A critical region of 250 base pairs was identified containing a core 13-base pair element essential for hypocretin expression. 相似文献
8.
9.
Members of the frizzled gene family encode seven-pass transmembrane proteins that function in the interpretation and reception of Wnt-mediated cell-cell communication events. To investigate frizzled function in early zebrafish development, we isolated the maternally contributed frizzled 10 (fz10) gene and localized it to linkage group 8 using radiation hybrid mapping. The cloned zebrafish fz10 is closely related to the fz10 group from other organisms. Zygotic expression of fz10 is observed in the posterior tail mesenchyme, dorsal neural tube, and different parts of the brain. 相似文献
10.
We have identified three genes, expressed in zebrafish embryos, that are members of the engrailed gene family. On the basis of sequence comparisons and analyses of their expression patterns, we suggest that two of these genes, eng2 and eng3, are closely related to the En-2 gene of other vertebrates. The third gene, eng1, is probably the zebrafish homolog of En-1. Subsets of cells at the developing junction between the midbrain and hindbrain express three different combinations of these genes, revealing a previously unknown complexity of this region of the CNS. Other cells, for example, jaw and myotomal muscle precursors, express two of the three genes in combinations which, in the myotomal muscles, change during development. Cells in the developing hindbrain and fins express only a single engrailed gene. We propose that the fates and patterning of these cells may be regulated by the coordinate expression of particular combinations of these closely related homeoproteins. 相似文献
11.
F.J.F. Laroche C. Tulotta G.E.M. Lamers A.H. Meijer P. Yang F.J. Verbeek M. Blaise J. Stougaard H.P. Spaink 《Gene expression patterns : GEP》2013,13(7):212-224
The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas. 相似文献
12.
Hyun-Jong Ahn Yoojin Park Suhyun Kim Hae-chul Park Su-Kyoung Seo Sang-Yeob Yeo Dongho Geum 《Molecules and cells》2010,30(4):377-382
The present study shows the expression profile and function of the homeobox gene, satb2 during zebrafish embryonic development. Satb2 was ubiquitously expressed from the 1 cell stage to the 10-somite stage in zebrafish embryos. Satb2 showed stage-specific expression profiles such as in the pronephric duct at 24 hpf, the branchial arches at 36 hpf, and the ganglion cell layer of the retina and fins at 48 hpf. Additionally, satb2 knockdown embryos were arrested at 50–60% epiboly, and transplantation experiments with satb2 knockdown cells showed migration defects. Interestingly, satb2 knockdown cells also exhibited down-regulation of dynamin II and VAMP4, which are involved in exocytosis and endocytosis, respectively. Furthermore, satb2 knockdown cells have a disorganized actin distribution and an underdeveloped external yolk syncytial layer, both of which are involved in epiboly. These results suggest that satb2 has a functional role in epiboly. This role may potentially be the regulation of endo-exocytic vesicle transport-dependent cell migration and/or the regulation of the development of the yolk syncytial layer. 相似文献
13.
14.
15.
Sequence and embryonic expression of the murine Hox-3.5 gene. 总被引:2,自引:0,他引:2
A M Geada S J Gaunt M Azzawi S M Shimeld J Pearce P T Sharpe 《Development (Cambridge, England)》1992,116(2):497-506
The murine Hox-3.5 gene has been mapped and linked genomically to a position 18 kb 3' of its most 5' locus neighbour, Hox-3.4, on chromosome 15. The sequence of the Hox-3.5 cDNA, together with the position of the gene within the locus, show it to be a paralogue of Hox-2.6, Hox-1.4 and Hox-4.2. The patterns of embryonic expression for the Hox-3.5 gene are examined in terms of three rules, proposed to relate a Hox gene's expression pattern to its position within the locus. The anterior boundaries of Hox-3.5 expression in the hindbrain and prevertebral column lie anterior to those of Hox-3.4 and all other, more 5'-located Hox-3 genes. Within the hindbrain, the Hox-3.5 boundary is seen to lie posterior to that of its paralogue, Hox-2.6, by a distance equal to about the length of one rhombomere. Patterns of Hox-3.5 expression within the oesophagus and spinal cord, but not the testis, are similar to those of other Hox-3 genes, Hox-3.3 and Hox-3.4. 相似文献
16.
Devos N Deflorian G Biemar F Bortolussi M Martial JA Peers B Argenton F 《Mechanisms of development》2002,115(1-2):133-137
We have identified the cDNAs of two new zebrafish preprosomatostatins, PPSS1 and PPSS3, in addition to the previously cloned PPSS2 (Argenton et al., 1999). PPSS1 is the orthologue of mammalian PPSSs, with a conserved C-terminal SS-14 sequence, PPSS2 is a divergent SS precursor and PPSS3 is a cortistatin-like prohormone. Using whole-mount in situ hybridisation, we have analysed the expression of PPSS1 and PPSS2 in zebrafish embryos up to 5 days post fertilisation. PPSS1 was expressed in the developing pancreas and central nervous system (CNS), whereas PPSS2 expression was exclusively pancreatic. In the CNS, PPSS1 was detected in several areas, in particular in the vagal motor nucleus and in cells that pioneer the tract of the postoptic commissure. PPSS1 was also expressed transiently in the telencephalon and spinal motor neurons. In all areas but the telencephalon PPSS1 was coexpressed with islet-1. 相似文献
17.
Jülich D Hwee Lim C Round J Nicolaije C Schroeder J Davies A Geisler R Lewis J Jiang YJ Holley SA;Tübingen Screen Consortium 《Developmental biology》2005,286(2):391-404
The Tübingen large-scale zebrafish genetic screen completed in 1996 identified a set of five genes required for orderly somite segmentation. Four of them have been molecularly identified and three were found to code for components of the Notch pathway, which are required for the coordinated oscillation of gene expression, known as the segmentation clock, in the presomitic mesoderm (PSM). Here, we show that the final member of the group, beamter (bea), codes for the Notch ligand DeltaC, and we present and characterize two new alleles, including one allele encoding for a protein truncated in the 7th EGF repeat and an allele deleting only the DSL domain which was previously shown to be necessary for ligand function. Interestingly however, when we over-express any of the mutant deltaC mRNAs, we observe antimorphic effects on both hindbrain neurogenesis and hypochord formation. Expression of bea/deltaC oscillates in the PSM, and a triple fluorescent in situ analysis of its oscillation in relation to that of other oscillating genes in the PSM reveals differences in subcellular localization of the oscillating mRNAs in individual cells in different oscillation phases. Mutations in aei/deltaD and bea/deltaC differ in the way they disrupt the oscillating expression of her1 and deltaC. Furthermore, we find that the double mutants have significantly stronger defects in hypochord formation but not in somitogenesis or hindbrain neurogenesis, indicating genetically that the two delta's may function either semi-redundantly or distinctly, depending upon context. 相似文献
18.
To shed light on the organization of the rostral embryonic brain of a lower vertebrate, we have directly compared the expression patterns of dlx, fgf, hh, hlx, otx, pax, POU, winged helix and wnt gene family members in the fore- and midbrain of the zebrafish. We show that the analyzed genes are expressed in distinct transverse and longitudinal domains and share expression boundaries at stereotypic positions within the fore- and midbrain. Some of these shared expression boundaries coincide with morphological landmarks like the pathways of primary axon tracts. We identified a series of eight transverse diencephalic domains suggestive of neuromeric subdivisions within the rostral brain. In addition, we identified four molecularly distinct longitudinal subdivisions and provide evidence for a strong bending of the longitudinal rostral brain axis at the cephalic flexure. Our data suggest a strong conservation of early forebrain organization between lower and higher vertebrates. 相似文献
19.
Neurovascular development in the embryonic zebrafish hindbrain 总被引:1,自引:0,他引:1
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos. 相似文献
20.
Silvia Moleri Giuseppe Cappellano Germano Gaudenzi Solei Cermenati Franco Cotelli David S. Horner Monica Beltrame 《Gene expression patterns : GEP》2011,11(1-2):3-11
The High-Mobility Group Box (HMGB) proteins are highly abundant proteins with both nuclear and extracellular roles in key biological processes. In mammals, three family members are present: HMGB1, HMGB2 and HMGB3. We characterized the HMGB family in zebrafish and report a detailed phylogenetic analysis of HMGB proteins. The B1, B2, and B3 subfamilies are present in cartilaginous fish, bony fish, and tetrapods, while jawless fish sequences emerge as basal to the gene family expansion. Two co-orthologs of each mammalian HMGB gene are present in zebrafish. All six zebrafish hmgb genes are maternally expressed, but huge differences in expression levels exist during embryonic development. The hmgb2a/hmgb2b genes are the most highly expressed, while hmgb3b is expressed at the lowest level. Remarkably, hmgb3 genes are not present in fugu, medaka, Tetraodon and stickleback. Our analysis highlights substantial overlaps, but also subtle differences and specificities in the expression patterns of the zebrafish hmgb genes. 相似文献