首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulatory effects of light on senescence of rice leaves wereinvestigated by measuring degradation of chlorophyll and proteinsin leaf segments which had been kept in the dark or under illuminationwith light of different intensities and colors. When leaveshad been left in total darkness for three days at 30°C,there was an initial long lag that lasted for one whole dayand then chlorophyll was rapidly degraded in the second andthird days. Breakdown of chlorophyll was strongly retarded bycontinuous illumination with white light of intensity as lowas 0.5 µmol photons m–2 s–1 but the effectof light decreased at intensities above 10 µmol photonsm–2 s–2. The initial lag and subsequent degradationof chlorophyll in the dark were little affected by illuminationwith red or far red light at the beginning of dark treatment.However, a brief illumination with red light at the end of thefirst and/or second day significantly suppressed degradationof chlorophyll during subsequent dark periods and the effectof red light was nullified by a short irradiation with far redlight. Thus, degradation of chlorophyll is regulated by phytochrome.Thylakoid membrane proteins and soluble proteins were also largelydegraded during three days in the dark. Degradation of membraneproteins such as the apoproteins of light-harvesting chlorophylla/b proteins of photosystem II and chlorophyll a-binding proteinsof reaction center complexes showed a long lag and was stronglysuppressed by illumination with weak white light. Thus, theloss of chlorophyll can be correlated with degradation of chlorophyll-carryingmembrane proteins. By contrast, light had only a weak protectingeffect on soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenaserapidly disappeared under illumination with weak white light.Thus, breakdown of thylakoid membrane and soluble proteins aredifferently regulated by light. Artifacts which would be introducedby detachment of leaves were also discussed. 1 Present address: Department of Applied Biology, Faculty ofScience and Technology, Science University of Tokyo, Yamazaki,Noda-shi, Chiba, 278 Japan. 2 Present address: Department of Life Science, Faculty of Science,Himeji Institute of Technology, Harima Science Park City, Hyogo,678-12 Japan.  相似文献   

2.
Seeds of Jussiaea suffruticosa reach high germination percentagesonly when exposed to long periods of continuous illumination.The light reaction may be repeatedly reversed by short exposuresto red and far red light, thus being mediated by the phytochromesystem. Seeds also germinate at high percentages if exposedto various cycles of 1 hr light and 24 hr of darkness at 20°C.If the temperature in the periods of darkness is raised up to30°C or lowered to 10°C the promotive effect of lightis inhibited. High temperatures (35°C) during imbibitionhave a promotive effect, whereas a pure O2 atmosphere decreasesthe response to light. KNO3 and kinetin enhance the responseto light but do not provoke germination in the dark. Only ifseed coats are punctured or removed does germination in thedark occur. (Received January 14, 1969; )  相似文献   

3.
The effect of germination temperature, duration of high-intensitylight, and day temperature in modifying the influence of nighttemperature on the flowering process of the M-8 strain of Uplandcotton was examined. In general, night temperatures above 28°C caused the first floral branch to be formed at a higher node.The magnitude of the reaction was conditioned by the other environmentalfactors studied. Germination temperature had a slight but significanteffect on subsequent floral responses to night temperature.Plants given eight-hour periods of high-intensity light eachday were delayed more by high night temperature than those exposedto 14 or 24 hours of high light. At high day temperatures (28–32°C) the inhibiting influence of the high night temperature wasgreatly increased. High day temperatures delayed floral initiationif the night temperature was high (28–32°C) but causeda lowering of position of first floral branch when the nighttemperature was low (20–22°C). The enhancement offlowering by 32°C days and 22°C nights was expressednot only in the low node of first floral branch, but also inthe shorter time from planting to floral initiation.  相似文献   

4.
Seeds of Hyptis suaveolens require long illumination periodsto promote full germination, both light and dark germinationbeing controlled by the phytochrome system. Germination in thisspecies is inhibited both by relatively low (up to 20°C)and high temperatures (45°C). Experiments in which seedswere transferred after different periods from sub-optimal orsupra-optimal temperatures to a favourable one, suggest thatboth high and low temperature inhibition may be explained onthe basis of phytochrome action. Thus, a temperature of 20°Cinduces dark dormancy due, probably, to dark reversion of phytochrometo the inactive form; whereas, at 45°C the dominant processseems to be phytochrome decay. No phytochrome loss has beenobserved at 10°C. If, however, phytochrome levels are reducedby a particular treatment, no irreversible alteration is produced;seeds simply require longer illumination periods under diesecircumstances. A low initial concentration of phytochrome couldaccount for the requirement of long illumination periods. Other factors affecting germination in this species, such asalternating temperatures, gibberellic acid and time of storage,are discussed. 1 Present address: Instituto Venezolano de Investigaciones Cientificas,Apartado 1827, Caracas, Venezuela. (Received January 21, 1971; )  相似文献   

5.
Further Observations on Light and Spore Discharge in Certain Pyrenomycetes   总被引:1,自引:0,他引:1  
A ‘spore-clock’ for studying the hourly rate ofspore discharge over a 24-hour period is described. A numberof the experiments reported in this paper have involved theuse of this apparatus. In Sordaria fimicola there is a distinct positive light-dischargereaction in a dark-conditioned culture, the rate of spore dischargeincreasing steeply to a peak 2–3 hours after brief stimulationby bright light. Although darkening a light-conditioned cultureleads to an immediate decrease in the rate of discharge, thereis no evidence of a delayed negative dark-discharge reaction. In S. verruculosa with a 12-hours light: 12-hours dark dailyreëgime, more spores are discharged in the dark than inthe light periods if the intensity of illumination is low. Withhigher light intensity there is no significant difference betweenthe number of spores discharged in light and dark periods. Asin S. fimicola there is a positive light-discharge reaction,the interval between stimulus and maximum response being muchlonger (8–12 hours). When a dark-conditioned culture istransferred to light for 48 hours and then returned to darknessfor a further 48 hours it is apparent that not only is therea positive light-discharge reaction but also a negative dark-dischargeresponse. The ‘plateau’ level of discharge is essentiallythe same in light and darkness. It is confirmed that in Hypoxylon fuscum light inhibits discharge.  相似文献   

6.
Seed germination in Talinum triangulare as affected by photoperiod,with or without previous incubation in the dark in water at25 or 4 °C, was studied. The time course and quantity ofseed germination in photoperiods of 1 h and above were similarwith or without dark pretreatment, but the time to half maximumgermination was reduced from 12 days in non-dark pretreatedseeds to 4 days in seeds given 20 days in the dark at 25°C.A photoperiod of 0·25 h gave a lower rate and total germinationthan photoperiods of 1 h and above. Un-pretreated seeds required17 cycles of 24 h photoperiod for maximum germination as comparedwith 7 or less cycles if the seeds received more than 10 daysdark pretreatment at 25 °C. Both the rate and total germinationin light increased as the length of dark pretreatment at 25°C was increased from zero to 30 days. Incubation of theseeds in water in the dark at 4 °C for 5 to 30 days priorto illumination at 21 °C, reduced both the rate and quantityof seed germination in light as compared with those similarlyincubated in the dark at 25 °C. However, previous incubationin the dark for 30 days at 4 °C partially substituted forthe light requirement. The possible mechanism of breakage ofseed dormancy in Talinumis discussed in relation to these andother findings. Talinum triangulare (Jacq.), Willd, light, photoperiod, seed germination  相似文献   

7.
Esashi, Y., Fuwa, Nn Kojima, K. and Hase, S. 1986. Light actionsin the germination of cocklebur seeds. IV. Disappearance ofred light-requirement for the germination of upper seeds subjectto anoxia, chilling, cyanide or azide pretreatmenL—J.exp. Bot. 37: 1652–1662. The effects on the germination of positively photoblastic uppercocklebur (X anthium pennsylvanicum Wallr.) seeds by pretreatingwith anoxia, chilling, cyanide or azide, which stimulates theirdark germination, were examined in relation to light actions.Prior to experiments, seeds were pre-soaked at 23 °C inthe dark for 1 or 2 weeks to remove the pre-existing Pfr. Whenthe prctreatment conditions were suboptimal for germinationinduction, the stimulating effects of the pretreatments on germinationduring a subsequent dark period at 23 °C were manifest onlywhen seeds were irradiated with red light before or after thepretreatment Red light promotion was reversed by blue or far-redlight treatment. However, both prc-chilling for 6 d at 8 °Cand prctreatment with 1· 5 mol m – 3 NaN3 for 2d could induce full germination without red light exposure.On the other hand, both pre-exposure to anoxia for 8 d and pretreatmentwith 30 mol m–3 KCN could induce the dark germinationonly when germination occurred at 33 °C which is known toaugment the ratio of an alternative respiration flux to a cytochromeone. Moreover, the dark germination in response to these inductionswere strongly inhibited by the inhibitors of alternative respiration,propyl gallate and benzohydroxamic acid, applied during a subsequentdark period. It was thus suggested that Pfr has some relationto the operation of two respiration systems of cocklebur seeds,but it is not indispensable to germination of this positivelyphotoblastic seed. Key words: Anoxia, azide, blue light, chilling cyanide, dark germination, far-red light, red light, seed germination, X anthium pennsylvanicum  相似文献   

8.
The effect of temperature on the development and fecundity of Sancassania polyphyllae fed on tissues of Polyphylla fullo larvae was studied at 15, 20, 25, 30, and 35 ± 1°C and 65 ± 10% RH in a dark incubator. Mean developmental period of immature stages decreased significantly with increasing temperatures from 15 to 30°C. Developmental periods at 30–35°C were not significantly different. The estimated lower developmental thresholds of the various immature stages ranged between 10.1 and 11.5°C. The thermal constant for the egg-to-female adult was 93.5 degree-days. The pre-oviposition, oviposition, and post-oviposition periods and female longevity were significantly longer at 15°C than at higher temperatures. Mean total and daily fecundity were the highest at 25°C, which were significantly different from those obtained at 15, 20 and 30°C. The net reproductive rate (R 0) was the highest at 25°C (588.3 ♀/♀). The longest mean generation time (T 0) occurred at 15°C (36 days) and the shortest occurred at 30°C (9.2 days). The highest intrinsic rate of increase (r m) for S. polyphyllae was observed at 25 (0.61 ♀/♀/day) and 30°C (0.62 ♀/♀/day).  相似文献   

9.
Esashi, Y., Oota, H., Saitoh, H. and Kodama, H. 1985. Lightactions in the germination of cocklebur seeds. III. Effectsof pre-treatment temperature on germination responses to far-redlight and on dark germination in the red light-requiring upperseeds.—J. exp. Bot. 36: 1465-1477. Red light (R) responsiveness in R-requiring upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds changed in differentpatterns during a soaking period at different temperatures.At temperatures above 23°C, the responsiveness increasedand then decreased. At lower temperatures (3–18°C),however, it continued to increase throughout an experimentalperiod. The lower temperatures caused germination in the subsequentdark at 33°C, regained the R responsiveness and acquiredthe dark germinability when subsequently exposed to 8°C,to an extent proportional to the duration of the chilling. Far-red (FR) was inhibitory to germination in an earlier soakingperiod at lower temperatures, but its effect gradually decresed,and finally turned promotive. The negative FR response was repeatedlycontrolled by the following R irradiation. However, the positiveFR response was enhanced by an immediate R irradiation, andFR/R reversibility occurred after the second FR. In contrastto the R responsiveness and dark germinability, the positivegermination response to FR was not induced by soaking at 3°C,in which the growth of the axial tissue as a photoreceptivesite did not occur at all. Similarly, it was not manifestedwhen the seeds soaked at 33°C were subsequently subjectedto 8°C. Key words: Cocklebur seeds, dark germination, far-red light, low temperature, red light, seed germination, Xanthium pennsylvanicum  相似文献   

10.
Cucumber (Cucumis sativus L.) seedlings are more sensitive to chilling stress when transferred to low temperature from the night cycle than from the day cycle. However, greater damage occurs when chilling is carried out in light than in dark. Freshly isolated protoplasts are extremely sensitive to damage when chilled at 4°C in light, but suffer significantly less injury when chilled in dark. If freshly isolated protoplasts are pre-chill conditioned at 27°C in either light or dark for a few hours prior to exposure to various chilling stresses, subsequent chilling damage is markedly reduced. Damage to chilled protoplasts also is reduced if cultures are placed in dark instead of light immediately following removal from low temperature. Experiments utilizing the cell wall synthesis inhibitor, dichlorobenzonitrile, showed that cell wall regeneration during the pre-chill conditioning period at 27°C does not appear to be associated with the enhanced chilling tolerance observed in these cultures. The results obtained in this investigation suggest that the physiological properties of cucumber cotyledon protoplasts accurately reflect those of intact seedlings, and hence provide a good system for studies into the mechanism of chilling damage in plants.  相似文献   

11.
INGOLD  C. T.; OSO  B. A. 《Annals of botany》1969,33(3):463-471
Spore discharge in Ascobolus crenulatus occurs both in the lightand in the dark. In a 12 h light: 12 h dark daily regime discharge-ratehas peaks in the dark periods, due apparently to light stimulationwith about half a day's interval between stimulus and response. Using a ‘spore clock’ the course of discharge hasbeen followed for a single apothecium on changing from darknessto light. Exposure to light (500 lux) of wave-lengths around400, 440 and 460 mµ immediately causes ’puffing‘,whilst light of longer wave-length (504 and 580 mµ) hasno effect. Change from darkness to white light has no immediateeffect, but there is a delayed stimulation with a marked increasein discharge-rate 10–14 h later. Simultaneous illuminationof an apothecium, which has been in darkness, by blue light(420 mµ, or 440 mµ, 500lux) and yellow light (580mµ, 500 lux) does not result in puffing. The yellow appearsto prevent the blue light from exerting its effects.  相似文献   

12.
INGOLD  C. T.; NAWAZ  M. 《Annals of botany》1967,31(3):469-477
Experiments are described which indicate that, although lightof short wavelength (400–500 mµ) is necessary forover-all sporophore development, during the last days of theprocess light of longer wavelength (640–720 mµ)accelerates development more than blue light (400–500mµ) does. It is shown that at 20° C this effect ofthe longer rays of light begins to be exerted 8 to 10 days aftersporophore initiation and only a very few days before maturity.  相似文献   

13.
The development of Gryllus argentinus Sauss. was studied under stable laboratory conditions: the temperature of 26°C, the air humidity of 60%, and the photoperiod of 12h light: 12 h dark. The life cycle of Gryllus argentinus includes four stages: egg, pronymph, nymph, and adult. The duration of embryonic development is 18 days. The depth of egg bedding in the peat is 9.63 ± 0.12 mm (n =145), the clutch containing 2–4 eggs. A female can lay over 1100 viable eggs during the entire oviposition period. Nymphal development includes 9 instars and lasts 97 days. The duration of nymphal instars (days) is: I—5; II—6; III—6; IV—6; V—8; VI—10; VII—13; VIII—14; IX—29. The duration of the adult life is 51 days in males and 69 days, in females. In the imaginal ontogenesis of males and females, three periods can be distinguished: pre-reproductive, reproductive, and postreproductive. Males start to emit the aggressive signal on the 6th (5–8th) day (the pre-reproductive period). They enter the reproductive period (start to emit the calling song) on the 9th (8–13th) day. Females enter the reproductive period (become capable of responding to the calling song and of copulation) on the 9th (8–10th) day. Oviposition starts on the day after the first copulation. The reproductive period lasts about 40 (15–59) days in males and 58 (21–70) days in females. The post-reproductive period starts in females at the moment of finishing the egg laying period and in males, with disappearance of reproductive behavior. The period ends in the animal’s death.  相似文献   

14.
Scales excised from lily bulblets were cultured on MS medium supplemented with 0.044 or 4.4 μM BA in the dark for 180 days. The culture period was divided into stage 1 (day 0–30), stage 2 (day 31–90) and stage 3 (day 91–180). The scales were cultured at 25°C in stage 1, 25°C or 8°C in stage 2, and 25°C in stage 3. When the scales were cultured on medium with 4.4 μM BA at 25°C for 180 days, bulblets with and without an elongated stem were produced. The percentage of bulblets with elongated stems greatly increased when the scales had been cultured at 8°C in stage 2. On medium with 0.044 μM BA, only bulblets without elongated stems were produced. The diameter of shoot primodia significantly enlarged in bulblets produced on medium with 4.4 μM BA at 8°C in stage 2 and no such enlargement occurred under the other conditions. Nearly square parenchyma cells were observed in the non-elongated shoot primodia in the former bulblets but not in the latter. These cells changed into longitudinally rectangular ones in the internode of elongated stems. Procambium was arranged almost parallel to the shoot axis in the stem of bulblets in the medium with 4.4 μM BA, but not in the medium with 0.044 μM BA.  相似文献   

15.
Experiments with Kalanchoe blossfeldiana are described in whichperiods of short-day treatment were interrupted by intercalatedlong days or light breaks during long dark periods. The effectsof 24-hour dark periods preceding and following such intercalatedlong days were also investigated. The results of these experiments have shown that: Single longdays intercalated between numbers of short days have a positiveinhibitory effect on flower initiation and are not merely ineffective.The inhibitory effect expressed as the number of inductive cyclesannulled is approximately additive, provided the long days areinterspersed with short days, but not if several long days aregiven consecutively. On the average 1 long day is capable ofannulling the flower-promoting effect of about 1 short days.To a first approximation flower numbers in Kalanchoe increaseexponentially with the number of inductive cycles given—upto at least 12 short days; the inhibitory effect of long daysinterspersed with short days also fits an exponential curve;i.e. the inhibition is roughly proportional to the amount ofprevious photo-periodic induction. A light break of as littleas 30 seconds' duration given in the middle of a long dark periodis as inhibitory as a long day. If followed by a long dark periodthe inhibition of an intercalated long day is almost completelyneutralized; a long dark period preceding it has no such effect. These results have been interpreted as due to the interactionof a flowering inhibitor with a reaction leading to flowering.A mechanism involving competitive inhibition of an adaptivelyformed enzyme has been described as a possible example of thekind of reaction which could account for the results presented.  相似文献   

16.
The achenes of the plant Tithonia rotundifolia show an embryodormancy, requiring a 3-month period of after-ripening to stimulategermination. Mechanical scarification did not enhance imbibitionof the achenes, indicating that the thick bi-layered achenewall does not impede water uptake. The light conditions necessaryfor optimal germination changed with achene age and the achenesbecame less sensitive to temperature. About 30–40% ofrecently harvested achenes germinated in the dark at 25 °C.Following a period of dry storage some of the achenes developeda light requirement and germination increased at 20, 25 and30 °C. Gibberellic acid stimulated the germination of achenestested after 12 weeks dry storage, and could substitute to someextent for the light and temperature requirements of the storedachenes. Tithonia rotundifolia, seed germination, gibberellic acid  相似文献   

17.
  1. Experiments are described which indicate that a temporary exposureto low temperature (vernalization) hastens inflorescence budinitiation in the Chrysanthemum, as measured by the time tothe macroscopic appearance of the bud and also by the numberof leaves produced. This effect is found in both long-and short-dayconditions.
  2. In the absence of vernalization plants kept inshort day assumea diageotropic growth habit and remain vegetativefor long periods,frequently for much more than one year. Unvernalizedlong-dayplants also remain vegetative but have a normal geotropicreaction.
  3. While the day-length effect is less important forinflorescencebud initiation, the opening and further developmentof budsformed in long day depend normally on subsequent day-lengthtreatment.
  4. A vernalization period of only three weeks appearsto be fullyadequate.
  5. The low-temperature treatment may begiven discontinuously,and evidence to hand appears to indicatethat it is more effectiveif given during the dark phase thanduring the light phase.Hence de-vernalization by temperaturesof about 20–25°C. does not appear to take place.
  6. There is evidence that little or none of the stimulus is carriedover from one year to another.
  7. The results are discussed inrelation to the auxin metabolismof the plant and also withregard to the absence in the literatureof previous mentionof the cold requirement.
The author is indebted to Professor F. G. Gregory and to Mr.F. J. Richards for their stimulating interest and helpful suggestionsin the course of this work, and to Dr. M. Holdsworth for providinghim with the results of earlier unpublished work. Messrs. H. Woolman Ltd. kindly supplied some of the plant materialused.  相似文献   

18.
When fruiting cultures of Sphaerobolus are transferred from continuous light to darkness the discharge of global masses continues for 1 day but then stops for the next few days. Experiments are reported in which this darkness is interrupted after 24 hr by brief (0.5-2 hr) treatment with light of different wavelengths and of equated low intensity (ca. 100 lux). Interruption by blue (ca. 448 mμ) or by green (ca. 500 mμ) light has no effect, but treatment with yellow (ca. 585 mμ) or red (ca. 650-700 mμ) leads to substantial discharge 24 hr later. If, however, the yellow treatment is followed immediately with blue there is little or no discharge; but if the order of this treatment is reversed, a high level of discharge results. This is somewhat greater than that resulting from treatment with yellow light alone. If, following a yellow treatment there is an interval of several hours before a blue treatment, the blue has less effect in negating the action of the yellow light. It is shown that, although in the final light-sensitive stages in development of the sporophore before it opens, yellow and red light are stimulatory but blue and green are not; in the phototropic response of the mature sporophores blue light is effective and yellow is not.  相似文献   

19.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号