首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Isolation of the haemopexin-haem receptor from pig liver cells   总被引:1,自引:0,他引:1  
R Majuri  R Gr?sbeck 《FEBS letters》1986,199(1):80-84
Isolated pig liver plasma membranes interact specifically with the haemopexin-haem complex (Kd 4.4 X 10(-7) M). Affinity chromatography was used to isolate a membrane component which binds this complex with high affinity. Pig serum haemopexin was first isolated by affinity chromatography on haemin-Sepharose followed by HPLC gel filtration. Liver membranes solubilized with Triton X-100 were incubated with haemin-Sepharose saturated with haemopexin, and as a control, with affinity gel lacking haemopexin. SDS-poly-acrylamide gel electrophoresis of the eluted protein indicated that from the haemin-Sepharose emerglow-molecular-mass haemin-binding proteins whereas the eluate from haemopexin-haemin-Sepharose contained an additional 71 kDa protein, which did not bind free haemin. This protein appears to represent the haemopexin-haem receptor or a part of it. Haem from the haemopexin complex, as also free haemin, was accepted by a binder in the plasma membrane, which in gel filtration behaved like an 80 kDa molecule. This component probably represents a second functional subunit of the haemopexin-haem receptor.  相似文献   

2.
Soluble 125I-labeled tropoelastin bound to confluent cultures of bovine ligamentum nuchae fibroblasts and to fibroblast plasma membrane preparations in a time-dependent, saturable, and reversible manner. Scatchard analysis indicates that there are approximately 2 X 10(6) binding sites/cell with a binding efficiency (Kd) of 8 X 10(-9) M. Binding of tropoelastin to cells and membranes reached equilibrium by 90 min and was reversible with 50% of specifically bound material released by 40 min. Specific binding of tropoelastin to cells pre-treated with dilute trypsin solutions was reduced significantly when compared with controls. Four polypeptides of estimated molecular masses of 67, 61, 55, and 43 kDa were obtained from detergent extracts of plasma membranes by elution affinity chromatography on elastin-Affi-Gel. Our findings establish that elastin-specific binding proteins displaying characteristics of a true receptor are present on the surface of elastin-producing cells.  相似文献   

3.
Insulin from a hystricomorph rodent, coypu (Myocaster coypus), was isolated and purified to near homogeneity. Like the other insulins that have been characterized in this Suborder of Rodentia, coypu insulin also exhibits a very low (3%) biological potency, relative to pig insulin, on lipogenesis in isolated rat fat-cells. The receptor-binding affinity is significantly higher (5-8%) in rat fat-cells, in rat liver plasma membranes and in pig liver cells, indicating that the efficacy of coypu insulin on receptors is about 2-fold lower than that of pig insulin. The primary structures of the oxidized A- and B-chains were determined, and our sequence analysis confirms a previous report [Smith (1972) Diabetes 21, Suppl. 2, 457-460] that the C-terminus of the A-chain is extended by a single residue (i.e. aspartate-A22), in contrast with most other insulin sequences, which terminate at residue A21. In spite of a large number of amino acid substitutions (relative to mammalian insulins), computer-graphics model-building studies suggest a similar spatial arrangement for coypu insulin to that for pig insulin. The substitution of the zinc-co-ordinating site (B10-His----Gln) along with various substitutions on the intermolecular surfaces involved in the formation of higher aggregates are consistent with the observation that this insulin is predominantly 'monomeric' in nature. The c.d. spectrum of coypu insulin is relatively similar to those of casiragua insulin and of bovine insulin at low concentration.  相似文献   

4.
Several substrates of endogenous Ca2+- and phospholipid-sensitive protein kinase have been identified in plasma membranes and cytosol from rat adipocytes. Specifically, Ca2+ stimulates phosphorylation of a 40-kDa protein in isolated plasma membranes, an effect which is further enhanced by the addition of the phorbol ester tetradecanoylphorbol acetate and phospholipase C. The 40-kDa phosphoprotein is also present in the cytosol, and its phosphorylation is stimulated in a Ca2+-dependent manner by phosphatidylserine, diacylglycerol, and phorbol ester. Direct addition of insulin to adipocyte plasma membranes stimulates phosphorylation of the 40-kDa protein in a concentration-dependent manner. Maximal stimulation was observed at 10(-8) M insulin. At 6.7 X 10(-8) M insulin, phosphorylation of the 40-kDa protein was stimulated by 68 +/- 9% (n = 6). Addition of phorbol ester (1, 10, and 100 ng/ml) plus insulin further enhanced the phosphorylation (286 +/- 39, n = 3; 350 +/- 65, n = 4; and 323 +/- 42%, n = 5, stimulation, respectively). Analysis of the 40-kDa phosphoprotein by two-dimensional polyacrylamide gel electrophoresis revealed that incubations containing no additions, insulin, and/or phorbol ester all resulted in the generation of a single and apparently identical phosphorylated 40-kDa species. These studies indicate that insulin and Ca2+- and phospholipid-dependent protein kinase stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes.  相似文献   

5.
P Luly  M Shinitzky 《Biochemistry》1979,18(3):445-450
The addition of 10(-9) M insulin to a suspension of rat liver plasma membranes increases the overall lipid microviscosity, eta, by about 10--20%. The effect is confined to physiological concentrations of the hormone and is highly specific. The specificity was demonstrated in experiments where insulin analogues were added to liver plasma membranes and where insulin was added to human erythrocyte membranes. In both of these experiments practically no change in eta was detected. Upon in vitro enrichment of the membrane cholesterol, eta exceeded the level mediated by insulin binding, and the addition of 10(-9) M insulin to the cholesterol-enriched membranes did not further increase eta. Concomitant to the increase in eta upon insulin binding, the overall degree of exposure of the membrane protein, presumably to both sides of the membrane, is substantially increased. This effect is in line with the notion of vertical displacement of membrane proteins induced by changes in eta. The observed structural modulation can account for the effect of insulin on unrelated membrane responses, as well as for the negative cooperativity of insulin binding.  相似文献   

6.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

7.
125I-GIP binds reversibly to a high affinity binding site in crude plasma membranes prepared from a hamster pancreatic beta cell tumor. The treatment of labeled membranes with the cross-linker dithiobis (succinimidylpropionate) prevents, to a greater extent, the rapid dissociation of 125I-GIP-membrane complexes which is observed when 10(-6) M native GIP is added. Polyacrylamide gel electrophoresis of membrane proteins reveals a major 125I-GIP-protein complex of Mr 64,000. This labeling decreases when increasing concentrations (10(-9) -10(-6)M) of native GIP are added but is not altered by other peptide hormones (tested at 10(-6)M) including glucagon, VIP and insulin. The Mr 64,000 complex is not observed in tissues which have no specific binding sites for GIP such as intestinal epithelium. Assuming one molecule of 125I-GIP is bound per molecule of protein, one protein with Mr 59,000 is identified as the specific GIP binding site.  相似文献   

8.
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.  相似文献   

9.
Cells of a clonal cell line (ob 17) isolated from the epididymal fat pad of ob/ob mouse possess insulin receptors. Their number was increased 1.5-fold after growth arrest, with no significant change in the Kd values of the "high affinity" sites determined by extrapolation of the high affinity portion of the curvilinear Scatchard plots. With chronic insulin exposure for 3 to 11 days after confluence, ob 17 cells showed a decrease in insulin receptor concentrations from 8,000 to 1,600 high affinity sites/cell (Kd from 0.45 to 1.10(-9) M) while similar levels of "low affinity" sites were found (80,000 to 100,000 sites/cell; Kd from 10(-8) to 3 x 10(-8) M). The loss of the high affinity binding sites is accompanied by the disappearance of the stimulatory effect by insulin of alpha-aminoisobutyrate uptake. Therefore, in contrast to 3T3-L1 fibroblasts, the ob 17 cells present, in culture, a self-modulation of insulin receptors and a loss of insulin sensitivity after chronic exposure to insulin.  相似文献   

10.
Analyses of insulin binding to human erythrocytes and to resealed right-side-out and inside-out erythrocyte membrane vesicles have revealed that high affinity insulin binding receptors are present on both sides of the erythrocyte membranes. Insulin binding to human erythrocytes was examined with the use of a binding assay designed to minimize the potential errors arising from the low binding capacity of this cell type and from non-specific binding in the assay. Scatchard analysis of equilibrium binding to the cells revealed a class of high affinity sites with a dissociation constant (Kd) of (1.5 +/- 0.5) X 10(-8) M and a maximum binding capacity of 50 +/- 5 sites per cell. Interestingly, both resealed right-side-out and inside-out membrane vesicles exhibited nearly identical specific sites for insulin binding. At the high affinity binding sites, for both right-side-out and inside-out vesicles, the dissociation constant (Kd) was (1.5 +/- 0.5) X 10(-8) M, and the maximum binding capacity was 17 +/- 3 sites per cell equivalent. These findings suggest that insulin receptors are present on both sides of the plasma membrane and are consistent with the participation of the erythrocyte insulin receptors in an endocytic/recycling pathway which mediates receptor-ligand internalization/externalization.  相似文献   

11.
Abstract

Plasma membranes obtained from obese (ob/ob) and lean (+/+ or +/ob) mouse livers were chemically crosslinked to [125I] -insulin and examined by electrophoresis and autoradiography. The pattern of crosslinked hormone was qualitatively similar in obese and lean plasma membranes. A major insulin binding protein of approximately M 120,000 was observed. Two additional bands were apparent, one which remained near the top of the gel and one about M 90,000. A minor band at approximately M 50,000 was also detected. For each of the insulin binding proteins a reduction in the amount of [125I]-insulin bound was observed with obese plasma membranes as compared with lean. For all proteins the insulin binding was specific as determined by competition with unlabeled hormone. In addition to plasma membrane receptors, insulin has also been reported to bind to nuclear membranes. The autoradiographic patterns of gels of [125]-insulin bound and crosslinked to nuclear membranes from obese and lean mouse livers indicated the presence of proteins of the same M as those described for plasma membranes. Nuclear membrane proteins bound less insulin than plasma membranes and, again, the obese was decreased relative to the lean. Contamination of the nuclear membrane fraction by plasma membranes was ruled out. Scatchard analyses of [125]-insul in bound to plasma and nuclear membranes indicated that the decrease in hormone binding in the obese mouse is a result of a reduction in the absolute number of receptors. The findings presented in this study provide additional support for this conclusion by demonstrating that membranes from obese mice are comprised of the same set of apparently unaltered insulin binding proteins. Further, the presence of similar insulin binding proteins in both nuclear and plasma membranes suggests a physiological relationship between these structures with respect to hormone binding and/or in the mechanism of action of insulin.  相似文献   

12.
Insulin binding experiments were performed with liver plasma membranes from guinea pig, calf and chicken. Bound insulin was separated from free insulin by a simple and rapid centrifugation of membranes through a layer of silicon oil. 125I-labeled beef insulin was displaced from receptor sites by unlabelled guinea pig, beef and chicken insulin. The receptors of animals with insulins of different biological activity show similar basic characteristics and affinities to the different insulin molecules and thus are not specialised for the interactions with the homologous insulin molecule. The binding capacity of the membranes for beef insulin seems to be inversely related to the affinity of the homologous insulin to the receptor, guinea pig membranes showing the highest and chicken membranes the lowest receptor concentration  相似文献   

13.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

14.
The involvement of G-proteins in the insulin signal transduction system has been studied in detail using the murine BC3H-1 myocyte system. Pertussis toxin (PT) treatment, previously shown to attenuate some of the metabolic effects of insulin in this cell line (Luttrell, L.M., Hewlett, E.L., Romero, G., and Rogol, A.D. (1988) J. Biol. Chem. 263, 6134-6141), abolished insulin-induced generation of diacylglycerol and inositolglycan mediators with no effects on either the autophosphorylation of the insulin receptor or the phosphorylation of the major endogenous substrates for insulin-stimulated tyrosine kinase activity (pp185 and pp42-45). In vitro ADP-ribosylation and immunoblotting studies suggest that the major PT substrate is a 40-kDa protein of the G alpha family. This protein band did not exhibit detectable tyrosine phosphorylation upon stimulation of either intact cells or cell membranes with insulin. In the presence of low concentrations of GTP, insulin treatment of isolated myocyte plasma membranes resulted in a small (30-40%) but significant stimulation of GTP hydrolysis. This effect was best observed in the presence of small concentrations of sodium dodecyl sulfate. The rate of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding to BC3H-1 membranes was also significantly increased in the presence of insulin. The effects of insulin on GTP hydrolysis and GTP gamma S binding were found to be dependent on the concentration of insulin. These effects were not detected in plasma membranes prepared from PT-pretreated BC3H-1 myocytes. In contrast, pretreatment with the B (inactive) subunit of PT did not alter the response of myocyte membranes to insulin. High affinity binding of [125I]iodoinsulin to myocyte plasma membranes was reduced by 60-70% in the presence of guanine nucleotides. Similar effects on insulin binding were produced by PT pretreatment of the cells. In contrast, adenine nucleotides had no effect on insulin binding. Scatchard analysis of the binding data showed that the observed effects of guanine nucleotides and PT on insulin binding resulted either from a reduction in the number of high affinity insulin binding sites or from a significant reduction of the affinity of insulin for its receptor. Low affinity binding sites did not appear to be affected by either guanine nucleotides nor PT pretreatment. These results provide substantial evidence suggestive of a noncovalent interaction between the insulin receptor and a regulatory G-protein system during the process of insulin signaling.  相似文献   

15.
Several proteins from bovine platelet lysate bound to type I collagen immobilized to the beads of formyl derivatives of cellulose. Among these proteins, a protein of about 100,000 daltons was purified to homogeneity by two additional affinity chromatographies, an organomercurial-agarose and a lentil lectin-agarose. This protein consisted of a single polypeptide chain which contains carbohydrate moiety and many intrapolypeptide disulfide bridges. In addition to platelets, this protein was present in plasma and cultured endothelial cells but not in red blood cells, leukocytes, and smooth muscle cells. Furthermore, it was released from platelets upon stimulation by various agonists. The purified 100-kDa protein was labeled with 125I to quantitate its binding to fibrillar type I collagen. The protein specifically bound to fibrillar collagen with the apparent dissociation constant of 5.6 x 10(-8) M for the high affinity site and 5.5 x 10(-7) M for the low affinity site. Analyses of amino acid sequences of both intact and tryptic fragments of this protein revealed that it had strong homology to the propolypeptide of human von Willebrand factor, which is also known as von Willebrand antigen II. Various properties of this protein listed above also strongly suggest that it was indeed the propolypeptide of bovine von Willebrand factor.  相似文献   

16.
Co-incubation of rat cortical membranes with 10(-4) M GTP results in a competitive inhibition of 5-hydroxytryptamine1A (5-HT1A) receptor binding sites labeled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin [( 3H]8-OH-DPAT). Preincubation of cortical membranes with 10(-4) M GTP does not significantly change either KD or Bmax values, indicating that the effect of GTP is reversible. By contrast, GTP gamma S and 5'-guanylylimidodiphosphate (GppNHp) are nonhydrolyzable analogues of GTP which lengthen the time course of guanine nucleotide activation of guanine nucleotide binding proteins (G proteins) and thereby alter G protein-receptor interactions. These nonhydrolyzable GTP analogues were used to characterize the effects of persistent alterations in G proteins on [3H]8-OH-DPAT binding to 5-HT1A receptors. Co-incubation of rat cortical membranes with either 10(-4) M GTP gamma S or GppNHp results in a decrease in both the affinity and apparent density of 5-HT1A binding sites. Co-incubation with the nonhydrolyzable nucleotides reduces the affinity of [3H]8-OH-DPAT binding by 65-70% and lowers the density of the binding site by 53-61%. Similarly, preincubation of membranes with a 10(-4) M concentration of either GTP gamma S or GppNHp significantly increases the KD value and reduces the Bmax value of [3H]8-OH-DPAT binding. These results indicate that GTP gamma S and GppNHp induce persistent changes in 5-HT1A receptor-G protein interactions that are reflected as a decrease in the density of binding sites labeled by [3H]8-OH-DPAT.  相似文献   

17.
The properties of the specific receptors for vasoactive intestinal peptide (VIP) in rat liver plasma membranes have been studied by using 125I-VIP as a tracer. The binding of the peptide was a reversible, saturable and specific process, as well as time and temperature dependent. Peptide inactivation was also dependent on time and temperature and remained relatively low in the standard conditions used, as it happened in the inactivation of the binding sites. The binding data were compatible with the existence of two classes of VIP receptors: a high affinity (Kd = 4.2 x 10(-10) M) and low binding capacity (1.5 pmol VIP/mg protein) class and another one of low affinity (Kd = 1.7 x 10(-7) M) and high binding capacity (38.6 pmol VIP/mg protein). The specificity of the binding sites of VIP was established from the fact that binding of 125I-VIP was inhibited by native VIP and by 60-fold higher concentrations of secretin but not by the parent hormone glucagon, by insulin or somatostatin at concentrations as high as 10(-6) M.  相似文献   

18.
The parathyrin receptor in renal cortex has been investigated by studying the binding of 125I-labelled parathyrin, or of unlabelled parathyrin detected with 125I-labelled antibodies, to a partially purified plasma membrane fraction. The kinetics of hormone uptake demonstrated a biphasic response in both systems at 22 degrees C but this phenomenon was not detectable at 37 degrees C. Specific displacement of lactoperoxidase labelled 125I-labelled parathyrin occurred with 8 ng unlabelled bovine parathyrin. The apparent affinity constant was 2.3-10(8) M(-1) and the apparent binding capacity of the membranes 1.25 pmol/mg protein. Using the labelled antibody technique the receptor showed maximal binding at pH 7.0-7.5. As little as 80 pg bovine parathyrin produced a significant increase in binding of labelled anti-bovine parathyrin antibody and saturation of binding sites was demonstrated at 2.5 pmol/mg protein. Oxidized hormone showed undetectable binding. Treatment of membranes with phospholipases A or D, or Trypsin greatly reduced subsequent hormone binding. Prior incubation of membranes with 1-34 synthetic parathyrin decreased the binding of intact hormone whereas gastrin, insulin and glucagon had no effect. Growth hormone and calcitonin slightly increased parathyrin binding.  相似文献   

19.
The role of the cellular receptor for the low-density lipoproteins (LDL) in cholesterol transport was initially defined through the study of nonhepatic cells in vitro. Since the liver is central in plasma lipoprotein metabolism, an investigation of hepatic lipoprotein receptors is important for understanding normal lipoprotein transport. Utilizing human hepatic and fibroblast membranes, the characteristics of receptors for LDL from hepatic and nonhepatic tissues were directly compared. Human hepatic membranes reversibly bound LDL within 5 min. Although both fibroblast and hepatic membranes saturably bound LDL at 37 degrees C, the fibroblast LDL receptor affinity (Kd = 2.5 X 10(-8) M) and number (5.5 X 10(12) sites/mg membrane protein) were greater than the hepatic receptor affinity (Kd = 10.8 X 10(-8) M) and number (0.5 X 10(12) sites/mg membrane protein). In contrast to the fibroblast LDL receptor which was unable to bind LDL in the presence of EDTA, the hepatic LDL receptor binding of LDL was only partially blocked by EDTA. The binding of LDL to its hepatic receptor is highly temperature-dependent, and studies utilizing both radiolabeled LDL and colloidal gold-labeled LDL indicate that little, if any, binding of LDL hepatic membranes occur at 0-4 degrees C. The hepatic membrane receptor(s) (Mr approximately equal to 270 000 and 330 000) differ from that of the fibroblast LDL receptor (Mr approximately equal to 130 000) and these proteins are present in hepatic membranes from a patient lacking the fibroblast LDL receptor. These data indicate that an expressed hepatic LDL receptor has unique properties different from those of the fibroblast LDL receptor and that the expressed protein(s) is genetically distinct from the fibroblast receptor.  相似文献   

20.
Severe acute respiratory syndrome (SARS) brought aglobal outbreak in spring of 2003 [1–3], and more andmore attention has been paid on it when a new caseresurfaced in Singapore last September [4]. By the endof May in 2003, WHO reported a cumulative total of 8202infected cases with 725 deaths from 28 countries.Because of the high transmission and morality rate ofSARS, scientists in many countries have made theirefforts in studying SARS coronavirus (SARS-CoV)[5, 6]. Several genomes of…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号