首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that type 1 astrocytes (A1) might modify the activities of the enzymes 5alpha-reductase (5alpha-R) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) present in the GT1-1 cells has been tested. The data obtained indicate that, utilizing a co-culture technique, A1 are able to: (1) decrease the formation of dihydrotestosterone (DHT) from testosterone (T); (2) increase the formation of dihydroprogesterone (DHP) from progesterone (P); (3) decrease the conversion of DHP into tetrahydroprogesterone (THP) in GT1-1 cells. Moreover, GT1-1 cells are able to increase the formation of DHP in A1; that of DHT was unchanged. The present data might suggest the possible existence of a third isoform of the enzyme 5alpha-R; details on this hypothesis are provided in the text. Interestingly, the inhibitory effect exerted by A1 on the formation of DHT in GT1-1 cells can be mimicked by transforming growth factor beta1 (TGFbeta1). Since TGFbeta1 had been previously shown to be directly involved in the stimulatory control of LHRH secretion by GT1-1 cells, acting both on LHRH release [R.C. Melcangi, M. Galbiati, E. Messi, F. Piva, L. Martini, M. Motta, Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GT1-1: is transforming growth factor-beta the principle involved? Endocrinology 136 (1995) 679-686.] and gene expression [M. Galbiati, M. Zanisi, E. Messi, I. Cavarretta, L. Martini, R.C. Melcangi, Transforming growth factor-beta and astrocytic conditioned medium influence LHRH gene expression in the hypothalamic cell line GT1, Endocrinology 137 (1996) 5605-5609], the present data also show that TGFbeta1 might intervene in modulating feedback signals reaching hypothalamic LHRH producing neurons. The present findings underline once more the importance of the physiological cross-talk between A1 and neurons.  相似文献   

2.
The type beta transforming growth factors (TGF) are potent regulators of the growth and functions of lymphocytes and macrophages. Recently the human glioblastoma cell line 308 was shown to produce TGF-beta 2. The relevance of this finding was evaluated further by comparing human glioblastoma cells with their nontransformed animal counterpart, astrocytes, with regard to the production of the three TGF-beta isoforms observed so far in mammals. In this report astrocytes are demonstrated to secrete also TGF-beta 2 and to express TGF-beta 1, -beta 2, and -beta 3 mRNA in vitro. In contrast, cultured murine brain macrophages release TGF-beta 1 and are positive for TGF-beta 1 mRNA only. Glia cell-derived TGF-beta 1 and -beta 2 are detected in latent form whereas both latent and active TGF-beta are identified in the supernatant of three human glioblastoma cell lines tested. These cell lines, however, show heterogeneity in regard to the isoform of TGF-beta expressed but share with astrocytes the inability to release TGF-beta 3. Provided production and activation of latent TGF-beta occur in vivo, astrocytes and microglia may then be expected to exert regulatory influences on immune mediated diseases of the central nervous system.  相似文献   

3.
Thrombospondin-1 (TSP-1) has been shown to bind and activate transforming growth factor-beta1 (TGF-beta1). This observation raises the possibility that TSP-1 helps to sequester TGF-beta1 in platelet alpha granules and activates TGF-beta1 once both proteins are secreted. Herein, we evaluated the level of active and latent TGF-beta1 in the plasma and in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice on two genetic backgrounds (C57BL/6 and 129Sv). The plasminogen activator inhibitor-1/luciferase bioassay and an immunological assay were used to determine active and latent TGF-beta1. No significant differences were observed in the levels of active and latent TGF-beta1 in the supernatant of thrombin-treated platelets from TSP-1 null and wild-type mice. Active and latent TGF-beta1 were significantly increased in the plasma and platelets of C57BL/6 mice as compared with 129Sv mice. In addition, there was an increase of plasma level of latent TGF-beta1 in TSP-1 null mice as compared with wild-type mice on the C57BL/6 background but not on the 129Sv background. No active TGF-beta1 was observed in the plasma of either TSP-1 null and wild-type mice. These data indicate that TSP-1 does not function as a chaperon for TGF-beta1 during platelet production and does not activate significant quantities of secreted TGF-beta1 despite a vast excess in the number of TSP-1 molecules as compared with TGF-beta1 molecules. Because platelet releasates from TSP-1 null mice contain active TGF-beta1, we suggest that other important mechanisms of physiological activation of TGF-beta1 probably exist in platelets.  相似文献   

4.
In this study, the effect of thyroid hormone (triiodothyronine, T(3)) on the secretion of mitogenic growth factors in astrocytes and C6 glioma cells was examined. The proliferating activity of T(3) could be due, at least in part, to the astrocyte secretion of acidic and basic fibroblast growth factor (aFGF and bFGF), tumor necrosis factor-beta, and transforming growth factor-beta. In contrast, the conditioned medium (CM) of T(3)-treated C6 cells was mitogenic to this cell line only after hyaluronidase digestion, suggesting the impairment of growth factor mitogenic activity by hyaluronic acid. Furthermore, the presence of bFGF was significantly greater in the CM of both T(3)-treated astrocytes and T(3)-treated C6 cells than in the corresponding control CM. These data show that T(3) induces cerebellar astrocytes to secrete mitogenic growth factors, predominantly bFGF, that could influence astrocyte and neuronal proliferation via autocrine and paracrine pathways.  相似文献   

5.
A residual blood supply to the ischaemic brain is a crucial determinant for tissue survival. Early changes in the vascular network and subsequent angiogenesis may be mediated by short-lived molecules like nitric oxide (NO) or growth factors such as transforming growth factor-beta1 (TGF-beta1). Although TGF-beta1 can inhibit NO production, this interaction has not been studied after ischaemia in humans. Serum samples were taken from patients at 24 h and 6 months and cerebrospinal fluid (CSF) samples at 24 h and 1 week later for possible correlation between the two factors. Tissue expression of TGF-beta1 and of the inducible isoform of NO synthase (NOS2) was assessed by immunohistochemistry. CSF levels of NO2-/NO3- as well as total (active + latent) TGF-beta1 were higher in stroke patients as compared to controls 24 h after the stroke. Both NO2-/NO3- and TGF-beta1 were lower 6 months after the stroke compared to 24 h. Levels of NO2-/NO3- correlated with levels of TGF-beta1 within the time points (P = 0.041, Kendall correlation coefficient). There was a strong staining for NOS2 in brain tissue sections in neurones, reactive astrocytes, infiltrating white blood cells, and endothelial cells of larger microvessels. TGF-beta1 expression was mainly limited to neurones and reactive astrocytes. These findings suggest that the interaction between TGF-beta1 and NOS2 might be important for angiogenesis after cerebral ischaemia and may indicate that TGF-beta1 is upregulated as a negative feedback response to elevated levels of NO.  相似文献   

6.
We have examined conditioned medium (CM) from cultures of normal rat mammary epithelial (RME) cells for growth factor activity on fresh RME cell cultures. RME cell-derived CM contained potent growth inhibitory activity toward fresh RME cell cultures when the medium was acidified by dialysis against 1% acetic acid prior to concentration. Dialysis of the CM at neutral pH resulted in CM that had growth stimulatory activity and no inhibitory activity. The acid-activated growth inhibitor was heat and acid stable, protease sensitive, and eluted from a Bio-Gel p60 column with a peak of activity in the 28 kDa range. Incubation of the acidified-concentrated CM with neutralizing antiserum (affinity purified IgG) against transforming growth factor (TGF)-beta completely abolished the inhibitory activity of the CM. Furthermore, RME cell growth in the presence of the growth inhibitor plus TGF-beta antiserum was greater than that observed in growth medium alone. Subsequent experiments demonstrated that addition of TGF-beta antiserum alone to serum-free medium enhanced RME cell growth, whereas addition of nonimmune IgG was without effect even at 25-fold higher concentrations. Zymographic analysis of RME-CM revealed the presence of plasminogen activator proteases that may mediate the partial activation of the latent growth factor. These results indicate that normal RME cells secrete a latent TGF-beta-like growth factor into conditioned medium. Furthermore, the results indicate that some of the latent growth factor is activated in situ and contributes to the growth potential of the cells in primary culture in an autocrine manner.  相似文献   

7.
Because of the importance of neural recognition molecules expressed by glial cells to mediate interactions with neurons, growth factors and cytokines known to be functional during morphogenesis and in diseases of the nervous system were studied for their effects on recognition molecule expression by cultured immature and mature astrocytes from several brain regions. In cultures of immature astrocytes, transforming growth factors-beta 1 (TGF-beta 1) and -beta 2 (TGF-beta 2) and nerve growth factor (NGF) increased expression of the neural adhesion molecule L1, leading to a glia-mediated L1-specific increase in neurite outgrowth of dorsal root ganglion neurons on the astrocyte substrate. L1 expression induced by TGF-beta was inhibited by addition of antibodies to NGF, suggesting that TGF-beta influences L1 expression by modulating production of NGF by astrocytes. TGF-beta 1 and -beta 2 decreased expression of N-CAM by immature astrocytes. Since N-CAM expression was not affected by NGF and antibodies to NGF did not abolish the TGF-beta-induced decrease in N-CAM expression, NGF did not appear to be the mediator for regulating expression of N-CAM. Expression of the adhesion molecule on glia (AMOG) was not affected by any factor. NGF and TGF-beta 2 in latent form, but not TGF-beta 1 were found in the culture supernatants. Addition of interferon-gamma (IFN-gamma), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), platelet-derived growth factor (PDGF), or basic fibroblast growth factor (bFGF) to the cultures did not change recognition molecule expression. REcognition molecule expression by mature astrocytes was not found to be modified by any of the factors tested. In view of the observation that levels of L1 and N-CAM expression correlated with the presence of TGF-beta 2 and NGF in the culture supernatants of immature astrocytes, an autocrine regulatory mechanism for recognition molecule expression by these cells is suggested to play a crucial role in regulation of neuron-glia interactions.  相似文献   

8.
In primary cultures of human neurons, 17beta-estradiol (17beta-E2) prevents caspase-6-mediated cell death and induces a caspase inhibitory factor (CIF) inhibiting active caspase-6 (Csp-6) in vitro. Here, we show that treatment of neurons with 17beta-E2 results in a proteasomal-dependent but ubiquitin-independent degradation of endogenous and exogenous active Csp-6 in live neurons and in cell free assays, respectively. We further show that the proteasomal-dependent degradation of Csp-6 is not required for its inhibition. Using several protease inhibitors, we find that leupeptin, E-64, and ALLN prevent inhibition of recombinant active Csp-6 (R-Csp-6) in 17beta-E2-treated neuronal protein extracts. Because all three protease inhibitors have the ability to inhibit cysteine proteases, we believe that a cysteinyl protease activity may be required for 17beta-E2-mediated inhibition of active Csp-6. However, we exclude caspases, calpains, and cathepsins as potential cysteinyl proteases involved in the 17beta-E2-mediated Csp-6 inhibition. The results suggest that a proteolytic activity inhibited by leupeptin, E-64, and ALLN is needed to inhibit Csp-6 and that the inhibited Csp-6 is subsequently degraded by the proteasome. The mechanism of 17beta-E2-mediated inhibition of Csp-6 is different from the ubiquitin-dependent proteasomal degradation of Csp-3 and Csp-7 by XIAP and cIAP2 but consistent with the mechanism of Baculovirus p35 inhibition of caspases.  相似文献   

9.
10.
11.
As a source of transforming growth factor beta1 (TGF-beta1), mast cells have been implicated as potential effector cells in many pathological processes. However, the mechanisms by which mast cells express, secrete, and activate TGF-beta1 have remained vague. We show here by means of RT-PCR, immunoblotting, and immunocytochemistry that isolated rat peritoneal mast cells synthesize and store large latent TGF-beta1 in their chymase 1-containing secretory granules. Mast cell stimulation and degranulation results in rapid secretion of the latent TGF-beta1, which is converted by chymase 1 into an active form recognized by the type II TGF-beta serine/threonine kinase receptor (TbetaRII). Thus, mast cells secrete active TGF-beta1 by a unique secretory mechanism in which latent TGF-beta1 and the activating enzyme chymase 1 are coreleased. The activation of latent TGF-beta1 specifically by chymase was verified using recombinant human latent TGF-beta1 and recombinant human chymase. In isolated TbetaRI- and TbetaRII-expressing peritoneal macrophages, the activated TGF-beta1 induces the expression of the plasminogen activator inhibitor 1 (PAI-1), whereas in the mast cells, the levels of TbetaRI, TbetaRII, and PAI-1 expression were below detection. Selective stimulation of mast cells in vivo in the rat peritoneal cavity leads to rapid overexpression of TGF-beta1 in peritoneal mast cells and of TbetaRs in peritoneal macrophages. These data strongly suggest that mast cells can act as potent paracrine effector cells both by secreting active TGF-beta1 and by enhancing its response in target cells.  相似文献   

12.
Integrins are crucial for the ability of cells to sense mechanical perturbations and to transmit intracellular stress to their environment. We here review the more recently discovered role of integrins in activating the pleiotrophic cytokine transforming growth factor beta 1 (TGF-beta1). TGF-beta1 controls tissue homeostasis in embryonic and normal adult tissues and contributes to the development of fibrosis, cancer, autoimmune and vascular diseases when being mis-regulated. In most of these conditions, active TGF-beta1 is generated by dissociation from a large latent protein complex that sequesters latent TGF-beta1 in the extracellular matrix (ECM). Two main models are proposed how integrins contribute to latent TGF-beta1 activation: (1) In a protease-dependent mechanism, integrins alphavbeta8 and alphavbeta3 are suggested to simultaneously bind the latent TGF-beta1 complex and proteinases. This close vicinity at the cell surface improves enzymatic cleavage of the latent complex to release active TGF-beta1. (2) Integrins alphavbeta3, alphavbeta5, alphavbeta6, and alphavbeta8 appear to change the conformation of the latent TGF-beta1 complex by transmitting cell traction forces. This action requires association of the latent complex with a mechanically resistant ECM and is independent from proteolysis. Understanding that different integrins use different mechanisms to activate latent TGF-beta1 opens new possibilities to develop cell-specific therapeutic strategies for TGF-beta1-induced pathologies.  相似文献   

13.
14.
17beta-estradiol (17beta-E2) protects against H2O2-mediated depletion of intracellular ATP and lessens the degree of depolarization of mitochondrial membrane potential (DeltaPsi(m)) in cultured lens epithelial cells consequential to oxidative insult. We now report that 17beta-E2 acts as a positive regulator of the survival signal transduction pathway, MAPK which, in turn, acts to stabilize DeltaPsi(m) in effect, attenuating the extent of depolarization of mitochondrial membrane potential in the face of acute oxidative stress. The SV-40 viral transformed human cell line, HLE-B3 was treated with 17beta-E2 over a time course of 60 min and phosphorylation of ERK1/2 was analyzed by Western blot. ERK1/2 was phosphorylated within 5-15 min in the presence of 17beta-E2. Cell cultures were exposed to the MEK1/2 inhibitor, UO126, subsequent to H2O2+/-17beta-E2 treatment and the DeltaPsi(m) examined using JC-1, a potentiometric dye which serves as an indicator for the state of mitochondrial membrane potential. UO126 treatment attenuated ERK1/2 phosphorylation irrespective of whether estradiol was administered. Mitochondrial membrane depolarization resulting from H2O2 stress was substantially greater in the presence of UO126. The greater the extent of depolarization, the less effective 17beta-E2 treatment was in checking mitochondrial membrane depolarization, indicating that the relative degree of ERK phosphorylation influences mitochondrial stability with oxidative insult. The data support a positive correlation between 17beta-E2 stimulation of ERK1/2 phosphorylation and mitochondrial stabilization that would otherwise cause a complete collapse of DeltaPsi(m).  相似文献   

15.
The development of a sensitive and solvent-free method for the measurement of estrone (E(1)) and 17beta-estradiol (17beta-E(2)) in human urine samples is described. The deconjugated estrogens were derivatized in situ with acetic acid anhydride and the derivatives were extracted directly from the aqueous samples using stir bar sorptive extraction (SBSE). The compounds containing a secondary alcohol function are further derivatized by headspace acylation prior to thermal desorption and gas chromatography/mass spectrometry (GC/MS). A number of experimental parameters, including salt addition, temperature and time, were optimized to increase the recovery of E(1) and 17beta-E(2) by SBSE. The derivatization reactions were also optimized to obtain the highest yields of the acylated estrogens. Detection limits of 0.02 and 0.03 ng mL(-1) were obtained for E(1) and 17beta-E(2), respectively. The method was applied to determine the effect of conjugated equine estrogen intake on the excretion of E(1) and 17beta-E(2) in human urine samples. Increased levels of the endogenous estrogens were detected after administering a standard dose of Premarin to a female volunteer. Routine monitoring of estrogen levels is recommended to avoid a high urinary excretion of E(1) and 17beta-E(2), nowadays enlisted as endocrine disrupting chemicals (EDCs), during hormone replacement therapy.  相似文献   

16.
17.
18.
Approaches that prevent acute rejection of renal transplants in a rhesus monkey model were studied to determine a common mechanism of acceptance. After withdrawal of immunosuppression, all 14 monkeys retained normal allograft function for >6 mo. Of these, nine rejected their renal allograft during the study, and five maintained normal function throughout the study period. The appearance of TGF-beta 1(+) interstitial mononuclear cells in the graft coincided with a nonrejection histology, whereas the absence/disappearance of these cells was observed with the onset of rejection. Analysis with a variety of TGF-beta 1-reactive Abs indicated that the tolerance-associated infiltrates expressed the large latent complex form of TGF-beta 1. Peripheral leukocytes from rejecting monkeys lacking TGF-beta 1(+) allograft infiltrates responded strongly to donor Ags in delayed-type hypersensitivity trans-vivo assays. In contrast, allograft acceptors with TGF-beta 1(+) infiltrates demonstrated a much weaker peripheral delayed-type hypersensitivity response to donor alloantigens (p < 0.01 vs rejectors), which could be restored by Abs that either neutralized active TGF-beta 1 or blocked its conversion from latent to active form. Anti-IL-10 Abs had no restorative effect. Accepted allografts had CD8(+) and CD4(+) interstitial T cell infiltrates, but only the CD4(+) subset included cells costaining for TGF-beta 1. Our data support the hypothesis that the recruitment of CD4(+) T regulatory cells to the allograft interstitium is a final common pathway for metastable renal transplant tolerance in a non-human primate model.  相似文献   

19.
The epithelial Ca2+ channels TRPV5 and TRPV6 are localized to the brush border membrane of intestinal cells and constitute the postulated rate-limiting entry step of active Ca2+ absorption. The aim of the present study was to investigate the hormonal regulation of these channels. To this end, the effect of 17beta-estradiol (17beta-E2), 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and dietary Ca2+ on the expression of the duodenal Ca2+ transport proteins was investigated in vivo and analyzed using realtime quantitative PCR. Supplementation with 17beta-E2 increased duodenal gene expression of TRPV5 and TRPV6 but also calbindin-D9K and plasma membrane Ca2+-ATPase (PMCA1b) in ovariectomized rats. 25-Hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) knockout mice are characterized by hyperparathyroidism, rickets, hypocalcemia, and undetectable levels of 1,25(OH)2D3 and were used to study the 1,25(OH)2D3-dependency of the stimulatory effects of 17beta-E2. Treatment with 17beta-E2 upregulated mRNA levels of duodenal TRPV6 in these 1alpha-OHase knockout mice, which was accompanied by increased serum Ca2+ concentrations from 1.69 +/- 0.10 to 2.03 +/- 0.12 mM (P < 0.05). In addition, high dietary Ca2+ intake normalized serum Ca2+ in these mice and upregulated expression of genes encoding the duodenal Ca2+ transport proteins except for PMCA1b. Supplementation with 1,25(OH)2D3 resulted in increased expression of TRPV6, calbindin-D9K, and PMCA1b and normalization of serum Ca2+. Expression levels of duodenal TRPV5 mRNA are below detection limits in these 1alpha-OHase knockout mice, but supplementation with 1,25(OH)2D3 upregulated the expression to significant levels. In conclusion, TRPV5 and TRPV6 are regulated by 17beta-E2 and 1,25(OH)2D3, whereas dietary Ca2+ is positively involved in the regulation of TRPV6 only.  相似文献   

20.
Oestrogen (E2) is an important regulator of bone cell function and alterations in oestrogen levels may cause abnormal bone metabolism in vivo. In this study we examined the long term effects of 17beta-oestradiol (17beta-E2) on G-proteins and the secondary signalling pathways of phospholipase C (PLC), cyclic adenosine monophosphate (cAMP), and 1,4,5-inositol triphosphate (IP3). Cells from neonatal mouse calvariae were cultured in phenol red-free RPMI 1640 medium supplemented with charcoal stripped foetal calf serum for 192 h with either oestrogen (10(-8) M), or oestrogen withdrawal after 48 h. Cultures were stimulated for the final 48 h with IL-6 (10(-10) M), or left unstimulated. Western blot analysis was undertaken on osteoblast membrane preparations obtained by 10 mM Tris-HCl, 0.1 mM EDTA pH 7.8 and centrifugation at 40,000 x g for 2 h. For cAMP study, cells were stimulated with IL-6 for either 15 min or 30 min. Intracellular cAMP was extracted from cells and measured by ELISA methodology. For the IP3 assay, cells were stimulated with IL-6 for 20 s and IP3 levels measured using radioimmunoassay. The blots revealed increased levels of Gialpha-, and Gqalpha-proteins with oestrogen withdrawal and IL-6 stimulation. This was in comparison to cells which were unstimulated, or stimulated with IL-6 with continuous 17beta-E2, or IL-6 alone. Gsalpha expression decreased with oestrogen withdrawal compared to the control. Limited amounts of Gialpha-, Gsalpha-, and Gqalpha-proteins were identified with continuous 17beta-E2. The levels of PLC isoforms PLCbeta1-2 were not affected by the differing oestrogen conditions. The cAMP production induced by IL-6 stimulation for 30 min and withdrawal of 17beta-E2 was lower and significantly different compared to the control study (P<0.05). Also IL-6 activation with continuous oestradiol increased cAMP levels and was significantly different from the control cells (P<0.01). However, 17beta-E2 had no effect on the formation of intracellular IP3, although IL-6 significantly lowered IP3 levels in all the groups compared to the control (P<0.01). These results suggest that oestrogen modulates the signal transduction pathways of G-protein molecules, and the secondary pathways of cAMP in mouse osteoblast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号