首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a partial linkage map in tetraploid potato which integrates simplex, duplex and double-simplex AFLP markers. The map consists of 231 maternal and 106 paternal markers with total map lengths of 990.9?cM and 484.6?cM. The longer of the two cumulative map lengths represents approximately 25% coverage of the genome. In tetraploids, much of the polymorphism between parental clones is masked by `dosage' which significantly reduces the number of individual markers that can be scored in a population. Consequently, the major advantage of using AFLPs – their high multiplex ratio – is reduced to the point where the use of alternative multi-allelic marker types would be significantly more efficient. The segregation data and map information have been used in a QTL analysis of late blight resistance, and a multi-allelic locus at the proximal end of chromosome VIII has been identified which contributes significantly to the expression of resistance. No late blight resistance genes or QTLs have previously been mapped to this location.  相似文献   

2.
 Seventy eight clones from the cross between SCRI clone 12601ab1 and cv Stirling were used to explore the possibility of genetical linkage analysis in tetraploid potato (Solanum tuberosum subsp. tuberosum). Clone 12601ab1 had quantitative resistance to Globodera pallida Pa2/3 derived from S. tuberosum subsp. andigena. The strategy adopted involved identifying single- (simplex) and double- (duplex) dose AFLP markers in the parents from segregation ratios that could be unambiguously identified in their offspring, detecting linkage between a marker and a putative quantitative trait locus (QTL) for resistance, and placing the QTL on the linkage map of markers. The numbers of scorable segregating markers were 162 simplex ones present only in 12601ab1, 87 present in Stirling, and 32 present in both; and 72 duplex markers present only in 12601ab1 and 45 present in Stirling. The total map length was 990.9 cM in 12601ab1 and 484.6 cM in Stirling. A QTL with a resistance allele present in double dose (QQqq) in 12601ab1 was inferred from the associations between resistance scores (square root of female counts) and two duplex markers linked in coupling, which, in turn, were linked in coupling to four simplex markers also associated with resistance, but to a lesser degree. The largest marker class difference was the one for the duplex marker P61M34=15. It accounted for 27.8% of the phenotypic variance in resistance scores, or approximately 30% of the genotypic variance. Subsequently, this duplex marker was found to be linked in coupling with a duplex SSR allele Stm3016=a, whose locus was shown to be on chromosome IV in a diploid reference mapping population. The other QTLs for resistance segregating in the progeny were not identified for one or more of the following reasons: the markers did not cover the whole of the genome, there were unfavourable repulsion linkages between the QTLs and markers, or the gene effects were not large enough to be detected in an experiment of the size conducted. It is concluded that prospects appear good for detecting QTLs and using marker-assisted selection in a tetraploid potato breeding programme, provided that, in future, the population size is increased to over 250 and more SSR markers are used to complement the AFLPs; the same is likely to be true for other autotetraploid crops. Received: 16 December 1997 / Accepted: 4 March 1998  相似文献   

3.
Molecular mapping of the potato virus Y resistance gene Rysto in potato   总被引:3,自引:0,他引:3  
Ry sto is a dominant gene which confers resistance to potato virus Y (PVY) in potato. We have used bulked segregant analysis of an F1 tetraploid potato population to identify three AFLP markers linked to and on either side of Ry sto . The tomato homologue of one of these AFLP markers was assigned to linkage group XI by analysis of an F2 mapping population of tomato, suggesting that Ry sto is also on chromosome XI of the potato genome. This map position was confirmed by the demonstration that Ry sto was linked to markers which had been previously mapped to chromosome XI of the potato genome. Four additional AFLP markers were identified that were closely linked to Ry sto in a population of 360 segregating progeny of a potato cross between a resistant (Ry sto ) and a susceptible parent. Two of these markers were on either side of Ry sto , separated by only a single recombination event. The other two markers co-segregated with Ry sto . Received: 29 July 1996 / Accepted: 30 August 1996  相似文献   

4.
Late blight caused by the oomycete Phytophthora infestans is the economically most important and destructive disease in potato cultivation. Quantitative resistance to late blight available in tetraploid cultivars is correlated with late maturity in temperate climates, which is an undesirable characteristic. A total of 30 DNA-based markers known to be linked to loci for pathogen resistance in diploid potato were selected and tested as polymerase chain reaction-based markers for linkage with quantitative trait loci (QTL) for late blight resistance and plant maturity in two half-sib families of tetraploid potatoes. Most markers originated from within or were physically closely linked to candidate genes for quantitative resistance factors. The families were repeatedly evaluated in the field for quantitative resistance to late blight and maturity. Resistance was corrected for the maturity effect. Nine of eleven different map segments tagged by the markers harbored QTL affecting maturity-corrected resistance. Interactions were found between unlinked resistance QTL, providing testable strategies for marker-assisted selection in tetraploid potato. Based on the linkage observed between QTL for resistance and plant maturity and based on the genetic interactions observed between candidate genes tagging resistance QTL, we discuss models for the molecular basis of quantitative resistance and maturity.  相似文献   

5.
Solanum bulbocastanum, a wild, diploid (2n=2x=24) Mexican species, is highly resistant to Phytophthora infestans, the fungus that causes late blight of potato. However this 1 EBN species is virtually impossible to cross directly with potato. PEG-mediated fusion of leaf cells of S. bulbocastanum PI 245310 and the tetraploid potato line S. tuberosum PI 203900 (2n=4x=48) yielded hexaploid (2n= 6x=72) somatic hybrids that retained the high resistance of the S. bulbocastanum parent. RFLP and RAPD analyses confirmed the hybridity of the materials. Four of the somatic hybrids were crossed with potato cultivars Katahdin or Atlantic. The BC1 progeny segregated for resistance to the US8 genotype (A-2 mating type) of P. Infestans. Resistant BC1 lines crossed with susceptible cultivars again yielded populations that segregated for resistance to the fungus. In a 1996 field-plot in Wisconsin, to which no fungicide was applied, two of the BC1 lines, from two different somatic hybrids, yielded 1.36 and 1.32 kg/plant under a severe late-blight epidemic. In contrast, under these same conditions the cultivar Russet Burbank yielded only 0.86 kg/plant. These results indicate that effective resistance to the late-blight fungus in a sexually incompatible Solanum species can be transferred into potato breeding lines by somatic hybridization and that this resistance can then be further transmitted into potato breeding lines by sexual crossing. Received: 27 October 1997 / Accepted: 11 November 1997  相似文献   

6.
RFLP analysis and linkage mapping in Solanum tuberosum   总被引:2,自引:0,他引:2  
Summary A morphologically and agronomically heterogeneous collection of 38 diploid potato lines was analysed for restriction fragment length polymorphisms (RFLPs) with 168 potato probes, including random genomic and cDNA sequences as well as characterized potato genes of known function. The use of four cutter restriction enzymes and a fragment separation range from 250 to 2,000 bases on denaturing polyacrylamide gels allowed the detection of RFLPs of a few nucleotides. With this system, 90% of all probes tested showed useful polymorphism, and 95% of those were polymorphic with two or all three enzymes used. On the average, 80% of the probes were informative in all pairwise comparisons of the 38 lines with a minimum of 49% and a maximum of 95%. The percentage of heterozygosity was determined relative to each other for each line and indicated that direct segregation analysis in F1 populations should be feasible for most combinations. From a backcross involving one pair of the 38 lines, a RFLP linkage map with 141 loci was constructed, covering 690 cMorgan of the Solanum tuberosum genome.  相似文献   

7.
8.
9.
The method of polymerase chain reaction was used to amplify a fragment of the LZ-NBS-LRR receptor kinase gene R1; the gene was transferred into potato (Solanum tuberosum) from its wild-growing relative S. demissum and confers the race-specific recognition of the pathogen Phytophthora infestans. To verify this method as a test for the presence of the late blight resistance gene R1, the amplified genome fragment was cloned from the potato hybrid comprising the germplasm of S. demissum. The primary structure of this fragment, which corresponded to the receptor domain of kinase, did not practically differ from the matching sequence in S. demissum. In addition, the method was verified by scoring the set of plant differentials, wherein the presence of R1 was established with race-specific Phytophthora isolates. By screening 70 potato cultivars, we established a significant relationship between the presence of the gene R1 fragment and the phenotypic characters of late blight resistance and late maturity. This evidence supports the idea that R1 was introgressed from short-day S. demissum into potato plants together with some gene(s) conferring late transition to flowering.  相似文献   

10.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

11.
Field trials were done with four cultivars over 3 years to assess the extent to which the amount of late blight on the foliage of a potato plant could be influenced by that on a neighbouring plant of the same or a different cultivar. Drills containing the test plants were interspersed with those of spreader plants (cv. King Edward) which were artificially inoculated with Phytophthora infestans. The intensity of blight on the test plants was recorded on several occasions.
Resistant cultivars tended to be scored as less resistant in mixtures with other cultivars than in pure stands, and susceptible cultivars tended likewise to be scored as more resistant in mixed stands. However, standard analysis of variance indicated no systematic evidence of a significant effect due to neighbour cultivars, nor of interaction between cultivars and neighbour cultivars. In contrast, Kempton's (1982) neighbour model indicated a significant and positive interference coefficient (β) in each trial, which generally decreased over time. Predicted pure stand scores for each cultivar indicated that the adjustment was greatest for the most resistant and most susceptible cultivars. There was no advantage in using two-plant rather than one-plant plots in withstanding neighbour effects.  相似文献   

12.
Potato tubers (cvs Cara and Bintje) were grown in compost in a glasshouse and immature tubers harvested 57, 68 and 78 days after planting. Two moisture levels were imposed after the first harvest by disconnecting the water supply to one of the treatments and allowing the soil in that treatment to dry naturally. Tubers from wetter compost (59.4% moisture holding capacity) were more resistant to Phytophthora infestans than those from drier compost (14.7% moisture holding capacity) 78 days after planting. The potential causes of this difference were investigated. Aqueous extracts of wet compost did not inhibit the growth of P. infestans. The susceptibility of the internal tuber tissue, from which the periderm had been removed, was different to whole tuber susceptibility. The internal tissue of tubers from wet compost was more susceptible (cv. Cara), or as susceptible (cv. Bintje) as that of tubers from dry compost 78 days after planting. Fungi were isolated from the surface of whole tubers and there were no differences between the populations of potentially antagonistic fungal genera on tubers from wet and dry compost. As the experiment progressed, the number of bacteria per gram fresh weight on tubers grown in wet compost increased, whereas that on tubers from drier compost decreased (cv. Bintje) or remained similar (cv. Cara). There were significantly (P= 0.008) more bacteria on the surface of tubers from wet compost 78 days after planting. When P. infestans was co-cultured in Petri dishes with randomly selected tuber surface bacteria, some isolates (≤ 16.7%) inhibited the growth of the fungus. The percentage of the total bacterial population that was antagonistic to P. infestans was not significantly affected by soil moisture level (P= 0.368). The greater numbers of bacteria, of which a proportion are antagonistic to P. infestans, on the surface of tubers grown in wet compost may account for the greater resistance to tuber blight in that instance.  相似文献   

13.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogenPhytophthora infestans.The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Voset al.,1995,Nucleic Acids Res.23:4407–4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates ofP. infestans.The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus.  相似文献   

14.
Potatoes of a number of varieties of contrasting levels of resistance were planted in pure or mixed stands in four experiments over 3 years. Three experiments compared the late blight severity and progress in mixtures with that in pure stands. Disease on susceptible or moderately resistant varieties typical of those in commercial use was similar in mixtures and pure stands. In 2 of 3 years, there were slight reductions on cv. Sante, which is moderately susceptible, in mixture with cv. Cara, which is moderately resistant. Cara was unaffected by this mixture. Mixtures of an immune or near‐immune partner with Cara or Sante substantially reduced disease on the latter. The effect of the size of plots of individual varieties or mixtures on blight severity was compared in two experiments. Larger plots had a greater area under the disease progress curve, but the average rate of disease progress was greater in smaller plots; this may be because most disease progress took place later, under more favourable conditions, in the smaller plots. In one experiment, two planting densities were used. Density had no effect on disease and did not interact with mixture effects. The overall conclusion is that, while mixtures of potato varieties may be desirable for other reasons, they do not offer any improvement on the average of the disease resistance of the components.  相似文献   

15.
Quantitative trait loci (QTLs) for resistance to Phytophthora infestans (late blight) were mapped in tomato. Reciprocal backcross populations derived from cultivated Lycopersicon esculentum x wild Lycopersicon hirsutum (BC-E, backcross to L. esculentum; BC-H, backcross to L. hirsutum) were phenotyped in three types of replicated disease assays (detached-leaflet, whole-plant, and field). Linkage maps were constructed for each BC population with RFLPs. Resistance QTLs were identified on all 12 tomato chromosomes using composite interval mapping. Six QTLs in BC-E (lb1a, lb2a, lb3, lb4, lb5b, and lb11b) and two QTLs in BC-H (lb5ab and lb6ab) were most consistently detected in replicated experiments or across assay methods. Lycopersicon hirsutum alleles conferred resistance at all QTLs except lb2a. Resistance QTLs coincided with QTLs for inoculum droplet dispersal on leaves, a trait in L. hirsutum that may contribute to resistance, and dispersal was mainly associated with leaf resistance. Some P. infestans resistance QTLs detected in tomato coincided with chromosomal locations of previously mapped R genes and QTLs for resistance to P. infestans in potato, suggesting functional conservation of resistance within the Solanaceae.  相似文献   

16.
Phytophthora infestans (Mont.) de Bary is the most important fungal pathogen of the potato (Solanum tuberosum). The introduction of major genes for resistance from the wild species S. demissum into potato cultivars is the earliest example of breeding for resistance using wild germplasm in this crop. Eleven resistance alleles (R genes) are known, differing in the recognition of corresponding avirulence alleles of the fungus. The number of R loci, their positions on the genetic map and the allelic relationships between different R variants are not known, except that the R1 locus has been mapped to potato chromosome V The objective of this work was the further genetic analysis of different R alleles in potato. Tetraploid potato cultivars carrying R alleles were reduced to the diploid level by inducing haploid parthenogenetic development of 2n female gametes. Of the 157 isolated primary dihaploids, 7 set seeds and carried the resistance alleles R1, R3 and R10 either individually or in combinations. Independent segregation of the dominant R1 and R3 alleles was demonstrated in two F1 populations of crosses among a dihaploid clone carrying R1 plus R3 and susceptible pollinators. Distorted segregation in favour of susceptibility was found for the R3 allele in 15 of 18 F1 populations analysed, whereas the RI allele segregated with a 1:1 ratio as expected in five F1 populations. The mode of inheritance of the R10 allele could not be deduced as only very few F1 hybrids bearing R10 were obtained. Linkage analysis in two F1 populations between R1, R3 and RFLP markers of known position on the potato RFLP maps confirmed the position of the R1 locus on chromosome V and localized the second locus, R3, to a distal position on chromdsome XI.  相似文献   

17.
Macrogametophytes derived from the seeds of a tree resistant to pine needle gall midge (PGM) were analyzed using amplified fragment length polymorphism (AFLP). A total of 244 segregating loci were detected among 71 macrogametophytes. Combining the AFLP results with previously reported segregation data for 127 random amplified polymorphic DNA (RAPD) markers, 157 AFLP and 50 RAPD markers with confirmed map positions were assigned to 20 linkage groups and three pairs covering 2085.5 cM with an average distance of 10.1 cM. The total map distance covers about 77.1–78.4% of the total genome, estimated to be approximately 2665–2719 cM in length. Thus, using AFLP markers, the previous RAPD map of this tree was improved in terms of the average distance between markers, the total map distance, and coverage of the genome. Three RAPD markers linked to a gene associated with resistance to PGM were also located on this map. Rceived: 14 April 2000 / Accepted: 21 August 2000  相似文献   

18.
Potato plants contain calystegines in leaves, stems, flowers, fruits and roots. Calystegines A3 and B2 are the main constituents. Highest concentrations were measured in sprouts emerging from the tubers. In 3 mm long sprouts, 3.3 mg total calystegines per g fresh mass were detected. Dormant tubers directly after harvest contain less calystegines in all parts than sprouting tubers. Flowers and young leaves are the aerial plant tissues with the highest calystegine concentration, i.e. 150 μg total calystegines per g fresh mass. Calystegine levels did not rise when sprouts were wounded. Tropinone application to sprouts and aerial tissues lead to an accumulation of pseudotropine and not to tropine. That indicates that stereospecific tropinone reduction is active in potato.  相似文献   

19.
Field resistance to Phytophthora infestans, the causal agent of foliage and tuber blight in cultivated potatoes, earliness (maturity) and vigour, were examined in a diploid segregating potato population grown in replicated trials over three consecutive growing seasons. A genetic linkage map of this population was constructed in parallel using PCR-based SSR, AFLP and CAPS markers. Analysis of the trait scores alongside the marker segregation data allowed the identification of regions of the genome which were significantly correlated with components of the respective characters. The most significant associations for all four traits were with marker alleles on potato linkage group V originating from the male (susceptible) parent. In the case of foliage resistance to late blight, the positions of the majority of the effects, which were located on eleven of the twelve potato linkage groups, have been detected in previous [16] and parallel studies [21]. The absence of Solanum demissum-derived R genes for hypersensitive response to late blight and the co-localisation of QTL for resistance, vigour and earliness suggest that developmental and/or physiological factors play a major role in determining the level of foliage resistance in this population. In contrast with previous findings, a negative correlation was found between foliage and tuber blight resistance.  相似文献   

20.
Late blight caused by the oomycete Phytophthora infestans is the most important fungal disease in potato cultivation worldwide. Resistance to late blight is controlled by a few major genes (R genes) which can be easily overcome by new races of P. infestans and/or by an unknown number of genes expressing a quantitative type of resistance which may be more durable. Quantitative resistance of foliage to late blight was evaluated in five F1 hybrid families originating from crosses among seven different diploid potato clones. Tuber resistance was evaluated in four of the families. Two of the families were scored for both foliage maturity and vigour. The five families were genotyped with DNA-based markers and tested for linkage with the traits analysed. QTL (quantitative trait locus) analysis identified at least twelve segments on ten chromosomes of potato having genes that affect reproducibly foliage resistance. Two of those segments also have major R genes for resistance to late blight. The segments are tagged by 21 markers that can be analyzed based on PCR (polymerase chain reaction) with specific oligonucleotide primers. One QTL was detected for tuber resistance and one for foliage vigour. Two QTLs were mapped for foliage maturity. Major QTL effects on foliage and tuber resistance to late blight and on foliage maturity and vigour were all linked with marker GP179 on linkage group V of potato. Plants having alleles at this QTL, which increased foliage resistance, exhibited decreased tuber resistance, later maturity and more vigour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号