首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
An analytic model is developed to explore the relationship between gene flow, selection, and genetic drift. We assume that a single copy of a mutant allele appears in a finite, partially isolated population and allow for the effects of immigration, genic selection, and mutation on the frequency of the mutant. Our concern is with the distribution of the mutant's frequency before it either is lost from the population or emigrates. Before either of these events, the allele will be a “private allele” and would be found in only one of several populations in a larger collection. Slatkin [(1985) Evolution 39, 53–65] found several simple properties of private alleles in his simulations. We use the method developed by Karlin and Tavaré [(1980) Genet. Res. 37, 33–46; (1981a), Theor. Pop. Biol. 19, 187–214; (1981b) Theor. Pop. Biol. 19, 215–229] for a model similar to ours to obtain a diffusion equation with a “killing term” and obtain the mean and variance of the mutant's frequency and its expected frequency in samples of a specified size. There is only fair agreement between the analytic results from this model and those from Slatkin's (loc. cit.) simulations. The rescaling method used to obtain the results indicates that if emigration is relatively frequent, the distribution of rare alleles is governed largely by the balance between genetic drift and emigration, with selection, mutation, and immigration playing a lesser role.  相似文献   

2.
The rad4.116 mutant of the fission yeast Schizosaccharomyces pombe is temperature-sensitive for growth, as well as being sensitive to the killing actions of both ultraviolet light and ionizing radiation. We have cloned the rad4 gene by complementation of the temperature sensitive phenotype of the rad4.116 mutant with a S. pombe gene bank. The rad4 gene fully complemented the UV sensitivity of the rad4.116 mutant. The gene is predicted to encode a protein of 579 amino acids with a basic tail, a possible zinc finger and a nuclear location signal. The amino terminal part of the predicted rad4 ORF contains two short regions of similarity to the C-terminal part of the human XRCC1 gene. Codon usage suggests that the gene is very poorly expressed, and this was confirmed by RNA studies. Gene disruption showed that the rad4 gene was essential for the mitotic growth of S. pombe.  相似文献   

3.
K. Onel  A. Koff  R. L. Bennett  P. Unrau    N. K. Holloman 《Genetics》1996,143(1):165-174
Mutation in the REC1 gene of Ustilago maydis results in extreme sensitivity to killing by ultraviolet light. The lethality of the rec1-1 mutant was found to be partially suppressed if irradiated cells were held artificially in G2-phase by addition of a microtubule inhibitor. This mutant was also found to be sensitive to killing when DNA synthesis was inhibited by external means through addition of hydroxyurea or by genetic control in a temperature-sensitive mutant strain defective in DNA synthesis. Flow cytometric analysis of exponentially growing cultures indicated that wild-type cells accumulated in G2 after UV irradiation, while rec1-1 cells appeared to exit from G2 and accumulate in G1/S. Analysis of mRNA levels in synchronized cells indicated that the REC1 gene is periodically expressed with the cell cycle and reaches maximal levels at G1/S. The results are interpreted to mean that a G2-M checkpoint is disabled in the rec1-1 mutant. It is proposed that the REC1 gene product functions in a surveillance system operating during S-phase and G2 to find and repair stretches of DNA with compromised integrity and to communicate with the cell cycle apparatus.  相似文献   

4.
J M Smith  N C Stenseth 《Heredity》1978,41(2):205-214
The evolutionary stability of the female-biased sex ratio observed in the wood lemming (Myopus schisticolor) is discussed. The hypothesis analysed is that the skewed sex ratio is maintained as a result of partial and/or recurrent inbreeding. Fredga et al. (1976, 1977) have suggested that an X-linked mutant gene, X, affects the male-determining action of the Y chromosome, thus converting some XY individuals into females. By a mechanism of selective non-disjunction in the foetal ovary only X-carrying eggs are produced. In particular the stability of that genetic mechanism (or the X chromosome) is analysed by considering the introduction of a "suppressing" sex-linked mutant gene Y. Several deterministic simulation models assuming father-daughter and/or brother-sister matings have been developed and analysed. It is concluded that in the case of extremely strong inbreeding, the hypothesised genetic mechanism may, as a result, be evolutionarily stable. Interpreting field observations on microtine rodents in general it is concluded that only a few species are likely to experience such extreme cases of inbreeding. The wood lemming and the related collared lemming (Dicrostonyx troquatus), another case which seems to have XY-females, are likely to exhibit sufficiently strong inbreeding.  相似文献   

5.
Several type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss. In the present study, we characterize a mutant form of the EcoRII gene complex that shows stronger capacity in such maintenance. This phenotype is conferred by an L80P amino acid substitution (T239C nucleotide substitution) mutation in the modification enzyme. This mutant enzyme showed decreased DNA methyltransferase activity at a higher temperature in vivo and in vitro than the nonmutated enzyme, although a deletion mutant lacking the N-terminal 83 amino acids did not lose activity at either of the temperatures tested. Under a condition of inhibited protein synthesis, the activity of the L80P mutant was completely lost at a high temperature. In parallel, the L80P mutant protein disappeared more rapidly than the wild-type protein. These results demonstrate that the capability of a restriction-modification system in forcing maintenance on its host can be modulated by a region of its antitoxin, the modification enzyme, as in the classical postsegregational killing systems.  相似文献   

6.
《Cell》1994,76(2):403-410
S. cerevisiae accumulate iron by a process requiring a ferrireductase and a ferrous transporter. We have isolated a mutant, fet3, defective for high affinity Fe(II) uptake. The wild-type FET3 gene was isolated by complementation of the mutant defect. Sequence analysis of the gene revealed the presence of an open reading frame coding for a protein with strong similarity to the family of blue multicopper oxidoreductases. Consistent with the role of copper in iron transport, growth of wild-type cells in copper-deficient media resulted in decreased ferrous iron transport. Addition of copper, but not other transition metals (manganese or zinc), to the assay media resulted in the recovery of Fe(II) transporter activity. We suggest that the catalytic activity of the Fet3 protein is required for cellular iron accumulation.  相似文献   

7.
8.
Y F Wei  B J Chen    L Samson 《Journal of bacteriology》1995,177(17):5009-5015
The alkB gene is one of a group of alkylation-inducible genes in Escherichia coli, and its product protects cells from SN2-type alkylating agents such as methyl methanesulfonate (MMS). However, the precise biochemical function of the AlkB protein remains unknown. Here, we describe the cloning, sequencing, and characterization of three Saccharomyces cerevisiae genes (YFW1, YFW12, and YFW16) that functionally complement E. coli alkB mutant cells. DNA sequence analysis showed that none of the three gene products have any amino acid sequence homology with the AlkB protein. The YFW1 and YFW12 proteins are highly serine and threonine rich, and YFW1 contains a stretch of 28 hydrophobic residues, indicating that it may be a membrane protein. The YFW16 gene turned out to be allelic with the S. cerevisiae STE11 gene. STE11 is a protein kinase known to be involved in pheromone signal transduction in S. cerevisiae; however, the kinase activity is not required for MMS resistance because mutant STE11 proteins lacking kinase activity could still complement E. coli alkB mutants. Despite the fact that YFW1, YFW12, and YFW16/STE11 each confer substantial MMS resistance upon E. coli alkB cells, S. cerevisiae null mutants for each gene were not MMS sensitive. Whether these three genes provide alkylation resistance in E. coli via an alkB-like mechanism remains to be determined, but protection appears to be specific for AlkB-deficient E. coli because none of the genes protect other alkylation-sensitive E. coli strains from killing by MMS.  相似文献   

9.
Two-dimensional polyacrylamide gel electrophoresis is used to visualize the regulatory subunit of cAMP-dependent protein kinase from cultured S49 mouse lymphoma cells and to demonstrate its in vivo phosphorylation. Regulatory subunits from mutant cells with altered kinases exhibit at least two patterns of charge shifts consistent with substitutions of single amino acids. The direct demonstration of structural alteration of this protein provides strong evidence for structural gene mutation in this cultured cell system. While mutant and wild-type gene products co-exist in the mutant cells, there is apparently preferential expression and phosphorylation of mutant subunit in these heterozygotes.  相似文献   

10.
Phosphoglucosamine mutase (GlmM; EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate to glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of the peptidoglycan precursor uridine 5'-diphospho- N -acetylglucosamine. We have recently identified the gene ( glmM ) encoding the enzyme of Streptococcus gordonii , an early colonizer on the human tooth and an important cause of infective endocarditis, and indicated that the glmM mutation in S. gordonii appears to influence bacterial cell growth, morphology, and sensitivity to penicillins. In the present study, we assessed whether the glmM mutation also affects escape from polymorphonuclear leukocyte (PMN)-dependent killing. Although no differences in attachment to human PMNs were observed between the glmM mutant and the wild-type S. gordonii , the glmM mutation resulted in increased sensitivity to PMN-dependent killing. Compared with the wild type, the glmM mutant induced increased superoxide anion production and lysozyme release by PMNs. Moreover, the glmM mutant is more sensitive to lysozyme, indicating that the GlmM may be required for synthesis of firm peptidoglycans for resistance to bacterial cell lysis. These findings suggest that the GlmM contributes to the resistance of S. gordonii to PMN-dependent killing. Enzymes such as GlmM could be novel drug targets for this organism.  相似文献   

11.
The yeast SPT10 gene encodes a putative histone acetyltransferase that binds specifically to pairs of upstream activating sequence (UAS) elements found only in the histone gene promoters. Here, we demonstrate that the DNA-binding domain of Spt10p is located between residues 283 and 396 and includes a His(2)-Cys(2) zinc finger. The binding of Spt10p to the histone UAS is zinc-dependent and is disabled by a zinc finger mutation (C388S). The isolated DNA-binding domain binds to single histone UAS elements with high affinity. In contrast, full-length Spt10p binds with high affinity only to pairs of UAS elements with very strong positive cooperativity and is unable to bind to a single UAS element. This implies the presence of a "blocking" domain in full-length Spt10p, which forces it to search for a pair of UAS elements. Chromatin immunoprecipitation experiments indicate that, unlike wild-type Spt10p, the C388S protein does not bind to the promoter of the gene encoding histone H2A (HTA1) in vivo. The C388S mutant has a phenotype similar to that of the spt10Delta mutant: poor growth and global aberrations in gene expression. Thus, the C388S mutation disables the DNA-binding function of Spt10p in vitro and in vivo. The zinc finger of Spt10p is homologous to that of foamy virus integrase, perhaps suggesting that this integrase is also a sequence-specific DNA-binding protein.  相似文献   

12.

Background

Bacterial biofilm is ubiquitous in nature. However, it is not clear how this crowded habitat would impact the evolution of bacteriophage (phage) life history traits. In this study, we constructed isogenic λ phage strains that only differed in their adsorption rates, because of the presence/absence of extra side tail fibers or improved tail fiber J, and maker states. The high cell density and viscosity of the biofilm environment was approximated by the standard double-layer agar plate. The phage infection cycle in the biofilm environment was decomposed into three stages: settlement on to the biofilm surface, production of phage progeny inside the biofilm, and emigration of phage progeny out of the current focus of infection.

Results

We found that in all cases high adsorption rate is beneficial for phage settlement, but detrimental to phage production (in terms of plaque size and productivity) and emigration out of the current plaque. Overall, the advantage of high adsorption accrued during settlement is more than offset by the disadvantages experienced during the production and emigration stages. The advantage of low adsorption rate was further demonstrated by the rapid emergence of low-adsorption mutant from a high-adsorption phage strain with the side tail fibers. DNA sequencing showed that 19 out of the 21 independent mutant clones have mutations in the stf gene, with the majority of them being single-nucleotide insertion/deletion mutations occurring in regions with homonucleotide runs.

Conclusion

We conclude that high mutation rate of the stf gene would ensure the existence of side tail fiber polymorphism, thus contributing to rapid adaptation of the phage population between diametrically different habitats of benthic biofilm and planktonic liquid culture. Such adaptability would also help to explain the maintenance of the stf gene in phage λ's genome.  相似文献   

13.
As a facultative aerobe with a high iron requirement and a highly active aerobic respiratory chain, Neisseria gonorrhoeae requires defence systems to respond to toxic oxygen species such as superoxide. It has been shown that supplementation of media with 100 microM Mn(II) considerably enhanced the resistance of this bacterium to oxidative killing by superoxide. This protection was not associated with the superoxide dismutase enzymes of N. gonorrhoeae. In contrast to previous studies, which suggested that some strains of N. gonorrhoeae might not contain a superoxide dismutase, we identified a sodB gene by genome analysis and confirmed its presence in all strains examined by Southern blotting, but found no evidence for sodA or sodC. A sodB mutant showed very similar susceptibility to superoxide killing to that of wild-type cells, indicating that the Fe-dependent SOD B did not have a major role in resistance to oxidative killing under the conditions tested. The absence of a sodA gene indicated that the Mn-dependent protection against oxidative killing was independent of Mn-dependent SOD A. As a sodB mutant also showed Mn-dependent resistance to oxidative killing, then it is concluded that this resistance is independent of superoxide dismutase enzymes. Resistance to oxidative killing was correlated with accumulation of Mn(II) by the bacterium. We hypothesize that this bacterium uses Mn(II) as a chemical quenching agent in a similar way to the already established process in Lactobacillus plantarum. A search for putative Mn(II) uptake systems identified an ABC cassette-type system (MntABC) with a periplasmic-binding protein (MntC). An mntC mutant was shown to have lowered accumulation of Mn(II) and was also highly susceptible to oxidative killing, even in the presence of added Mn(II). Taken together, these data show that N. gonorrhoeae possesses a Mn(II) uptake system that is critical for resistance to oxidative stress.  相似文献   

14.
The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (-312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity.  相似文献   

15.
16.
Deletion of the ecdysteroid UDP-glucosyltransferase gene (egt) from the Autographa californica nuclear polyhedrosis virus (AcNPV) genome increases the speed of killing of this virus (D. R. O'Reilly and L. K. Miller, Bio/Technology 9:1086-1089, 1991). Second-instar Spodoptera exigua larvae are killed more rapidly by the egt deletion mutant of AcNPV than by wild-type AcNPV. Unlike wild-type AcNPV-infected larvae, larvae infected with an egt deletion mutant molt and resume feeding as mock-infected larvae do. Wild-type AcNPV and egt deletion mutant recombinants marked with a lacZ gene were used to study their pathogenesis in insects. Histopathological investigation revealed that early degeneration of the Malpighian tubules, not the molting per se, may be the cause of this increased speed of killing by AcNPV.  相似文献   

17.
The meiosis of two mutants ofBrassica oleracea var.capitata was analysed which have been isolated after gamma irradiation and hybridization.
  1. Univalents appear in different frequencies in the pollen mother cells of both these mutants attributed to a genetically conditioned reduction of the chiasmata frequency resulting in manifold irregularities in the later stages of microsporogenesis. The number of microspores per PMC varies between 1 and 8, the chromosome number of the microspores between 6 and 12. As a consequence of these meiotic disturbances a strong reduction of the fertility of male and female germ cells occurs.
  2. In principle, both mutants show the same meiotic behaviour, but the irregularities appear in a stronger degree in mutant 45 as compared with mutant 47. They are obviously caused by the same mutated gene which shows differences in its manifestation in the two mutants due to their different genotypic constitution.
  3. The mutant gene belongs to the group of desynaptic genes controlling the process of chiasmata formation. The degree of desynapsis caused by this gene is very weak as compared with ds-genes of other species.
  相似文献   

18.
Mutations in the connexin26 (GJB2) gene account for about half of inherited non-syndromic deafness cases in Western countries. The connexin26 protein is a subunit of gap junctions that form a network of intercellular communication among supporting cells and fibrocytes in the mammalian inner ear. Here we describe functional implications of mutations in the coding region of connexin26 genes (M1V, M34T, L90P, R127H, F161S, P173R, and R184P), identified in patients and stably transfected in human HeLa cells. While all mutated connexin26 cDNAs were transcribed, only M34T, L90P, R127H, F161S, and R184P were translated in HeLa cells. Analysis of indirect immunofluorescence showed membranous localization, strong for M34T, L90P, R127H, and very weak for F161S, but no signal corresponding to M1V, P173R and R184P. Tracer coupling experiments revealed diffusion of microinjected neurobiotin into neighbouring cells in the case of M34T and R127H, whereas M1V, L90P, F161S, P173R and R184P mutants did not show intercellular coupling. The results of oligomerisation studies suggested a partly disturbed assembly of hemichannels in M34T and L90P mutants but complete absence of hemichannel formation in the R184P mutant. The R127H mutation did not affect channel formation and is likely to represent a polymorphism. Our results show that mutations in the connexin26 gene can affect gap junctional intercellular communication at the level of protein translation, trafficking or assembly of hemichannels.  相似文献   

19.
XR-1 is a Chinese hamster ovary (CHO) cell mutant which is unusually sensitive to killing by gamma rays in the G1 portion of the cell cycle but has nearly normal resistance to gamma-ray damage in late S phase. The cell-cycle sensitivity correlates with the mutant's inability to repair DNA double-strand breaks (DSBs) produced by ionizing radiation and restriction enzymes. We have previously shown in somatic cell hybrids of XR-1 cells and human fibroblasts that the XR-1 mutation is a recessive mutation. In this study, using somatic cell hybrids formed between XR-1 and human fibroblasts, we map the human complementing gene to chromosome 5 by chromosome-segregation analysis. This gene biochemically restores the hamster defect to wild-type levels of gamma-ray and bleomycin resistance as well as restoring its proficiency to repair DNA DSBs, suggesting that a single gene is responsible for the XR-1 phenotype. We have tentatively assigned the name XRCC4 (X-ray-complementing Chinese hamster gene 4) to this human gene until its biochemical function in repair is discovered.  相似文献   

20.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号