首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 209 毫秒
1.
解木聚糖类芽孢杆菌(Paenibacillus xylanilyticus)发酵液经硫酸铵分级沉淀、HiPrep26/10 Desalting柱脱盐、HiPrepDEAE FF16/10阴离子交换柱、HiPrep 16/60 Sephacryl S-100凝胶柱、HiPrep 16/10 Source 30S阳离子交换柱等,最终纯化出单一组分的木葡聚糖酶,经过SDS-PAGE电泳分析,此木葡聚糖酶相对分子量约为39 kD。该菌所产木葡聚糖酶的最适反应温度是50℃,在60℃以下较稳定;最适反应pH是7.0,在pH5.0-10.0范围内酶活力较为稳定。酶的动力学研究显示Km为65 g/L,Vmax为6.49μmol/min,kcat=10.86 s-1。底物特异性研究表明对木葡聚糖具有较高比活力。酶蛋白经质谱分析,比对结果显示与来源于Paenibacillus pabuli的木葡聚糖酶有较高同源性。本研究为首次报道解木聚糖类芽孢杆菌(P.xylanilyticus)产木葡聚糖酶。  相似文献   

2.
利用KTAUPC-900快速蛋白液相色谱系统(FPLC)从绿色木霉MJ1固体发酵产物中分离纯化出内切β-葡聚糖苷酶。分离纯化后酶的比活力提高了28·6倍,回收率为19·7%。SDS-PAGE后经BIO-RAD凝胶成像系统分析该内切酶的分子量为64·7kD。酶学试验研究表明:该酶的最适反应温度53℃,最适pH为4·2,Lineweaver-Burk法求得动力学参数,Km和Vmax分别为1·230×10-2g/mL、2·396×10-2mg/(mL·min)。并确定了FPLC层析缓冲液的离子强度为2·2mmol/L时分离效果达到最佳。  相似文献   

3.
脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质   总被引:10,自引:1,他引:9  
通过Bio-Gel P-60分子筛和DEAE-与Q-sepharose离子交换层析等手段,分离纯化了棘孢曲霉SM-L22纤维素酶系中五种内切酶组分EGⅡ-1、EGⅡ-2、EGⅢ-1、EGⅢ-2和EGⅣ,并且对这五种内切酶组分的基本性质进行了研究.通过SDS-PAGE和IEF电泳测得其分子量分别为38.7,34.4,31.4,36.9和23.7kD,等电点分别为pH<3.5,<3.5,4.9,4.5和5.0.5个酶组分均属酸性纤维素酶,最适pH在3.5~4.0之间;最适温度分别为55℃、60℃、(60~70)℃、(60~70)℃和60℃.各酶组分有较宽的pH稳定性;温度稳定性表现为EGⅡ-1>EGⅡ-2>EGⅢ-1>EGⅢ-2>EGⅣ.EGⅡ-1和EGⅡ-2有较高的底物专一性,而EGⅢ-1、EGⅢ-2和EGⅣ对木聚糖有交叉活性.Fe2+对除EGⅣ以外的四种酶组分都有激活作用,尤其是对EGⅢ-2有强烈的激活作用.动力学分析表明各纤维素酶组分对底物亲和力的大小与酶的催化率之间并无相关性.  相似文献   

4.
以伴刀豆球蛋白为介质定向固定化脲酶的研究   总被引:1,自引:0,他引:1  
将戊二醛将伴刀豆球蛋白(ConA)和壳聚糖载体交联,然后利用ConA与脲酶糖链的特异性结合作用,实现脲酶的定向固定化.定向固定化的最适条件为戊二醛浓度3.5%、ConA浓度1mg/mL、ConA溶液pH值7.0、脲酶浓度0.4mg/mL.定向固定化脲酶的最适pH 5.0~6.0、最适温度77℃,米氏常数Km11.76mmol/L,与游离酶及非定向固定化脲酶比较,定向固定化脲酶的最适pH向酸性范围发生了偏移并有更宽的pH适用范围,最适温度提高,与底物的亲和力较大,且有较好的操作稳定性.  相似文献   

5.
对纤维素酶各组分的酶学性质进行研究,是提高生物法利用纤维素效率的关键。本研究以实验室筛选得到的产纤维素酶细菌为出发菌株,对其发酵粗酶液的纤维素酶酶学性质进行研究。以羧甲基纤维素钠为底物,所测内切葡聚糖苷酶活力为15.4 IU/ml,酶促动力学常数Km和Vmax分别为0.67 mg/ml和0.62 mg(ml·min)-1,以微晶纤维素为底物,其外切葡聚糖苷酶活力为29.9 IU/ml,酶促动力学常数Km和Vmax分别为0.95 mg/ml和0.38mg(ml·min)-1。两种酶的最适反应温度与p H相同,分别为55℃和p H7.2。  相似文献   

6.
脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质   总被引:1,自引:0,他引:1  
通过Bio GelP 60分子筛和DEAE 与Q sepharose离子交换层析等手段 ,分离纯化了棘孢曲霉SM L2 2纤维素酶系中五种内切酶组分EGⅡ 1、EGⅡ 2、EGⅢ 1、EGⅢ 2和EGⅣ ,并且对这五种内切酶组分的基本性质进行了研究。通过SDS PAGE和IEF电泳测得其分子量分别为 38 7,34 4,31 4,36 9和 2 3 7kD ,等电点分别为pH <3 5,<3 5,4 9,4 5和 5 0。 5个酶组分均属酸性纤维素酶 ,最适pH在 3 5~ 4 0之间 ;最适温度分别为 55℃、60℃、( 60~ 70 )℃、( 60~70 )℃和 60℃。各酶组分有较宽的pH稳定性 ;温度稳定性表现为EGⅡ 1 >EGⅡ 2 >EGⅢ 1>EGⅢ 2 >EGⅣ。EGⅡ 1和EGⅡ 2有较高的底物专一性 ,而EGⅢ 1、EGⅢ 2和EGⅣ对木聚糖有交叉活性。Fe2 +对除EGⅣ以外的四种酶组分都有激活作用 ,尤其是对EGⅢ 2有强烈的激活作用。动力学分析表明各纤维素酶组分对底物亲和力的大小与酶的催化率之间并无相关性。  相似文献   

7.
利用重组大肠杆菌Escherichia coli Rosetta(DE3)/pET-SPase发酵生产蔗糖磷酸化酶(EC 2.4.1.7,Sucrose phosphorylase,SPase)。收集的菌体经高压破碎后离心得到粗酶液,通过镍NTA亲和层析、超滤除盐后得到电泳纯的SPase,纯化后的SPase的比酶活是原来的2.1倍,酶活回收率达到82.7%。经SDS-PAGE电泳测定,重组SPase的分子量约为59 kDa。该酶在不高于37℃,pH 6.0~6.7的条件下比较稳定,最适催化温度与最适催化pH分别为37℃,pH 6.7,该酶对蔗糖的米氏常数(Km)为7.3 mmol/L,最大反应速率(Vmax)为0.2μmol/(min.mg)。此外文中还以蔗糖和氢醌为底物,利用重组SPase催化合成α-熊果苷。其最佳反应条件为:20%蔗糖,200 U/mL的酶液,1.6%氢醌,pH 6.0~6.5,25℃,反应21 h。α-熊果苷的摩尔产率为78.3%,α-熊果苷的产量为31 g/L。  相似文献   

8.
《环境昆虫学报》2013,35(1):55-60
采用DNSA法研究家蝇3龄幼虫各消化器官中纤维素酶的组成及特性。结果表明,家蝇各消化器官均含有内切β-1,4-葡聚糖酶(endo-β-1,4 glucanase,EC 3214,EG)、外切β-1,4-葡聚糖酶(exo-β-1,4-glucanase, EC3.2.1.91,CBH)和β-葡萄糖苷酶(β-glucosidase, EC 3.2.1.21,BG)。家蝇消化器官中EG、CBH和BG的最适反应时间均为60 min,最适反应温度为50℃,这些酶在体外的热稳定性较好,在50℃以下处理1 h能保持较高的活性。这三种纤维素酶在不同消化器官中的配比关系和活性表现存在一定的差异,其中中肠的酶活性最高,在最适反应条件下,EG、CBH和BG的酶活性分别达到1.02±0.033 IU/mg、1.57±0.070 IU/mg和1.2±0.048 IU/mg。  相似文献   

9.
将戊二醛将伴刀豆球蛋白(ConA)和壳聚糖载体交联, 然后利用ConA与脲酶糖链的特异性结合作用, 实现脲酶的定向固定化。定向固定化的最适条件为戊二醛浓度3.5%、ConA浓度1 mg/mL、ConA溶液pH值7.0、脲酶浓度 0.4 mg/mL。定向固定化脲酶的最适pH 5.0~6.0、最适温度77°C、米氏常数Km11.76 mmol/L, 与游离酶及非定向固定化脲酶比较, 定向固定化脲酶的最适pH向酸性范围发生了偏移并有更宽的pH适用范围, 最适温度提高, 与底物的亲和力较大, 且有较好的操作稳定性。  相似文献   

10.
利用Absidiasp.R菌株,通过液体发酵的方法,得到了一种高活性的大豆异黄酮糖基水解酶。该酶经硫酸铵分级沉淀、DEAE-Cellocuse(DE-52)离子交换层析纯化,被纯化了11倍,收率为10.9%;经SDS-聚丙烯酰胺凝胶电泳测得该酶的分子量为53kD;该酶的最适反应温度为50℃;最适pH为5.0;温度低于60℃,pH在5.0~7.0范围内该酶较稳定,Co2 、Ca2 对该酶有激活作用;Ag 、Cu2 对该酶有抑制作用。当以染料木甙为底物时该酶的米氏常数(Km)为1.3×10-2mol/L。等电聚焦电泳测得其等电点为3.2。  相似文献   

11.
WHATMAN 1 CHR filter paper manufactured from macerated cotton fibers was shown to be a soft substrate when broken down by purified cellulases of Trichoderma reesei (CELLUCLAST). Destruction of filter-paper disks was induced by CBH I/1, CBH I/2, CBH II/1, CBH II/2, and EG I in a macroscopic assay. Attack on disks by mixtures of these cellulases (CBH I/1 or CBH I/2 mixed with CBH II/1, CBH II/2, or with EGJ) were followed by synergistically enhanced destructions. SCHLEICHER &SCHUELL filter paper No 595 was shown to be a harder substrate of enzymatical decomposition when induced by cellulases of CELLUCLAST. None of the cellulases could induce macroscopic destruction of filter-paper disks when acting in isolation. However, mixtures of isolated exo and endo-glucanases (CBH I/1 or CBH I/2 mixed with CBH II/1, CBH II/2, or EG I) caused powerful destruction of filter-paper disks. SCHLEICHER &SCHUELL filter paper No 595 incubated first with an endo-glucanase (CBH II/1, CBH II/2, EG I) and treated in a secondary incubation with an exo-glucanase (CBH I/1, CBH I/2) were destroyed to a greater extent than with incubations executed in the reverse order. Results confirm the endo exo concept of explaining cellulose decomposition. The filter-paper destruction assay was performed with filter-paper disks prepared with an office punch. Disks were incubated in 1 ml EPPENDORF reaction tubes filled up beforehand with 0.4 or 0.5 ml of enzyme solution. The degree of synergism of cellulases resulted from the assay in the range of 300 to 1 300 p.c.  相似文献   

12.
Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH 4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), beta-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-beta-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against beta-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified beta-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.  相似文献   

13.
Colloidal gold coupled to endo-1,4-beta-glucanase II (EG II) and 1,4-beta-D-glucan cellobiohydrolase I (CBH I), isolated from Trichoderma reesei (QM9414), and endo-1,4-beta-xylanase from Aureobasium pullulans (NRRLY-2311-1) was used successfully to determine the ultrastructural localization of cellulose and xylan in sound birch wood. In addition, these enzyme-gold complexes demonstrated the distribution of cellulose and xylan after decay by three white rot fungi, Phanerochaete chrysosporium, Phellinus pini, and Trametes versicolor, and one brown rot fungus, Fomitopis pinicola. Transverse sections of sound wood showed that EG II was localized primarily on the S(1) layer of the secondary wall, whereas CBH I labeled all layers of the secondary wall. Oblique sections showed a high concentration of gold labeling, using EG II or CBH I. Preference for the sides of the microfibrillar structure was observed for both EG II and CBH I, whereas only CBH I had a specificity for the cut ends of microfibrils. Labeling with the xylanase-gold complex occurred primarily in the inner regions of the S(2) layer, S(1), and the middle lamella. In contrast, little labeling occurred in the middle lamella with EG II or CBH I. Intercellular regions within the cell corners of the middle lamella were less electron dense and labeled positively when EG II- and xylanase-gold were used. Wood decayed by P. chrysosporium or P. pini was delignified, and extensive degradation of the middle lamella was evident. The remaining secondary walls labeled with EG II and CBH I, but little labeling was found with the xylanase-gold complex. Wood decayed by T. versicolor was nonselective, and erosion of all cell wall layers was apparent. Remaining wall layers near sites of erosion labeled with both EG II and CBH I. Erosion troughs that reached the S(1) layer or the middle lamella had less xylanase-gold labeling in the adjacent cell wall that remained. Brown-rotted wood had very low levels of gold particles present in sections treated with EG II or xylanase. Labeling with CBH I had the lowest concentrations in the S(2) layer near cell lumina and corresponded to sites with the most extensive degradation.  相似文献   

14.
Microcrystalline cellulose (10 g/L Avicel) was hydrolysed by two major cellulases, cellobiohydrolase I (CBH I) and endoglucanase II (EG II), of Trichoderma reesei. Two types of experiments were performed, and in both cases the enzymes were added alone and together, in equimolar mixtures. In time course studies the reaction time was varied between 3 min and 48 h at constant temperature (40 degrees C) and enzyme loading (0.16 micromol/g Avicel). In isotherm studies the enzyme loading was varied in the range of 0.08-2.56 micromol/g at 4 degrees C and 90 min. Adsorption of the enzymes and production of soluble sugars were followed by FPLC and HPLC, respectively. Adsorption started quickly (50% of maximum achieved after 3 min) but was not completed before 60-90 min. For CBH I a linear relationship was observed between the production of soluble sugars and adsorption, showing that the average activity of the bound CBH I molecules does not change with increasing saturation. For EG II the corresponding curve levelled off which is explained by initial hydrolysis of loose ends on Avicel. The enzymes competed for binding sites, binding of EG II was considerably affected by CBH I, especially at high concentration. CBH I produced more soluble sugars than EG II, except at conversions below 1%. At 40 degrees C when the enzymes were added together they produced 27-45% more soluble sugars than the sum of what they produced alone, i.e. synergistic action was observed (the final conversion after 48 h of hydrolysis was 3, 6, and 13% for EG II, CBH I, and their mixture, respectively). At 4 degrees C, on the other hand, when the conversion was below 2.5%, almost no synergism could be observed. Molar proportions of the produced sugars were rather stable for CBH I (11-15%, 82-89%, and <6% for glucose, cellobiose, and cellotriose, respectively), while it varied considerably with both time and enzyme concentration for EG II. The observed stable but high glucose to cellobiose ratio for CBH I indicates that the processivity for this enzyme is not perfect. EG II produced significant amounts of glucose, cellobiose, and cellotriose, which are not the expected products of a typical endoglucanase activity on a solid substrate. We explain this by hypothesizing that EG II may show processivity due to its extended substrate binding site and the presence of its cellulose binding domain.  相似文献   

15.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

16.
Fifteen different cellulase preparations from Trichoderma reesei, obtained either commercially or from pilot plants, were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting using monoclonal antibodies against two cellobiohydrolases (CBH I, CBH II), an endoglucanase (EG I), and beta-glucosidase. The staining patterns were compared with the activities of the preparations against filter paper (FPU), carboxymethylcellulose (CMC-ase), cellobiose (beta-glucosidase), and azocasein (protease). Variable amounts of proteolytic degradation products of CBH I, CBH II, and EG I were seen in most samples, and only half of them contained intact beta-glucosidase. The degree of proteolysis did not correlate with any significant difference in the respective activities of these preparations against filter paper cellulose or carboxymethylcellulose. In more than 50% of all cases a decreased beta-glucosidase activity and the absence of intact beta-glucosidase protein in Western blots was observed in preparations displaying high proteolytic activity.  相似文献   

17.
Cellulose is the most abundant biopolymer and a major reservoir of fixed carbon on earth. Comprehension of the elusive mechanism of its enzymatic degradation represents a fundamental problem at the interface of biology, biotechnology, and materials science. The interdependence of cellulose disintegration and hydrolysis and the synergistic interplay among cellulases is yet poorly understood. Here we report evidence from in situ atomic force microscopy (AFM) that delineates degradation of a polymorphic cellulose substrate as a dynamic cycle of alternating exposure and removal of crystalline fibers. Direct observation shows that chain-end-cleaving cellobiohydrolases (CBH I, CBH II) and an internally chain-cleaving endoglucanase (EG), the major components of cellulase systems, take on distinct roles: EG and CBH II make the cellulose surface accessible for CBH I by removing amorphous-unordered substrate areas, thus exposing otherwise embedded crystalline-ordered nanofibrils of the cellulose. Subsequently, these fibrils are degraded efficiently by CBH I, thereby uncovering new amorphous areas. Without prior action of EG and CBH II, CBH I was poorly active on the cellulosic substrate. This leads to the conclusion that synergism among cellulases is morphology-dependent and governed by the cooperativity between enzymes degrading amorphous regions and those targeting primarily crystalline regions. The surface-disrupting activity of cellulases therefore strongly depends on mesoscopic structural features of the substrate: size and packing of crystalline fibers are key determinants of the overall efficiency of cellulose degradation.  相似文献   

18.
The specificity of polyclonal antibodies (Pab) raised against Trichoderma reesei cellulases has been studied. cDNAs lacking regions coding for certain functional domains were produced by preparing series of 3'-end deletions from the cDNAs for two cellobiohydrolases, CBH I and CBH II, and an endoglucanase, EG I. The proteins coded by the full length cDNAs and the truncated proteins coded by the deleted cDNAs were expressed in yeast Saccharomyces cerevisiae, under the control of the ADC1 promoter. Each polyclonal antiserum showed cross-reactivity with other cellulases. Pabs for CBH I and CBH II both recognized EG I. Pab for EG I strongly recognized both CBH I and CBH II. By analyzing the truncated proteins, we found that these antibodies were almost entirely directed against the conserved tail of the cellulase enzymes.  相似文献   

19.
Hydrolysis of microcrystalline cellulose (Avicel) by cellobiohydrolase I and II (CBH I and II) from Trichoderma reesei has been studied. Adsorption and synergism of the enzymes were investigated. Experiments were performed at different temperatures and enzyme/substrate ratios using CBH I and CBH II alone and in reconstituted equimolar mixtures. Fast protein liquid chromatography (FPLC) analysis was found to be an accurate and reproducible method to follow the enzyme adsorption. A linear correlation was found between the conversion and the amount of adsorbed enzyme when Avicel was hydrolyzed by increasing amounts of CBH I and/or CBH II. CBH I had lower specific activity compared to CBH II although, over a wide concentration range, more CBH I was adsorbed than CBH II. Synergism between the cellobiohy-drolases during hydrolysis of the amorphous fraction of Avicel showed a maximum as a function of total enzyme concentration. Synergism measured as a function of bound enzyme showed a continuous increase, which indicates that by decreasing the distance between the two enzymes the synergism is enhanced. The adsorption process for both enzymes was slow. Depending on the enzyme/substrate ratio it took 30-90 min to reach 95% of the equilibrium binding. The amount of bound enzyme decreased with increasing temperature. The two enzymes compete for the adsorption sites but also bind to specific sites. Stronger competition for adsorption sites was shown by CBH I. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号