首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novikoff ascites tumor cells contain a UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase B) that acts on galactosides and N-acetylgalactosaminides in which the accepting sugar is beta 1----3 substituted by a Gal or GlcNAc residue. Characterization of enzyme products by 1H-NMR and methylation analysis indicates that an R beta 1----3(GlcNAc beta 1----6)Gal- branching point is formed such as occurs in blood-group-I-active substances. The enzyme does not show an absolute divalent cation requirement and 20 mM EDTA is not inhibitory. The activity is strongly inhibited by Triton X-100 at concentrations of greater than or equal to 0.2%. Competition studies suggest that a single enzyme acts on Gal beta 1----3Gal beta 1----4Glc, GlcNAc beta 1----3Gal beta 1----4GlcNAc and GlcNAc beta 1----3GalNAc alpha-O-benzyl (Km values 0.71, 0.83 and 0.53 mM, respectively). Gal beta----3Gal beta 1----4Glc as an acceptor substrate for beta 6-GlcNAc-transferase B does not inhibit the incorporation of GlcNAc in beta 1----6 linkage to the terminal Gal residues of asialo-alpha 1-acid glycoprotein catalyzed by a beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase A) previously described in Novikoff ascites tumor cells [D. H. Van den Eijnden, H. Winterwerp, P. Smeeman & W.E.C.M. Schiphorst (1983) J. Biol. Chem. 258, 3435-3437]. Neither is Triton X-100 at a concentration of 0.8% inhibitory for the activity of beta 6-GlcNAc-transferase A. This activity is absent from hog gastric mucosa microsomes, which has been described to contain high levels of beta 6-GlcNAc-transferase B. [F. Piller, J. P. Cartron, A. Maranduba, A. Veyrières, Y. Leroy & B. Fournet (1984) J. Biol. Chem. 259, 13,385-13,390]. Our results show that Novikoff tumor cells contain two beta-galactoside beta 6-GlcNAc-transferases, which differ in acceptor specificity and tolerance towards Triton X-100. A role for these enzymes in the synthesis of branched polylactosaminoglycans and of O-linked oligosaccharide core structures having blood-group I activity is proposed.  相似文献   

2.
A modified high pressure liquid chromatographic method using lactose (Gal beta 1----4Glc) as an exogenous acceptor has been used to characterize the sialyltransferases known to increase in the serum of colchicine-treated rats. The results show a 10-fold increase of Gal beta 1----4GlcNAc alpha 2----6 sialyltransferase (alpha 2----6 ST), whereas the Gal beta 1----3GlcNAc alpha 2----3 sialyltransferase showed only 1.6-fold increase in the serum after 17 h of colchicine treatment. The sialyltransferase activity in serum using exogenous desialylated, alpha 1-acid glycoprotein as acceptor also showed an eightfold increase. In liver homogenate and Golgi membrane, the sialyltransferase activity when assayed with desialylated alpha 1-acid glycoprotein as acceptor showed a slight decrease after 4 h, but returned to normal level after 17 h. A similar trend was seen when the two transferases were assayed with lactose as acceptor. The antiserum to rat alpha 2----6 ST inhibited the sialyltransferase activity in serum, liver, and jejunal incubation medium. Jejunal sections from rats treated with colchicine for 4 h in presence of heated serum showed a decrease of sialyltransferase, with consequent increase of the alpha 2----6 ST enzyme activity in the medium. This result suggests that intestinal tissue could be a source of increased serum enzyme activity in colchicine treatment.  相似文献   

3.
An N-acetylglucosaminyltransferase has been partially purified from Novikoff tumor cell ascites fluid by affinity chromatography on concanavalin A-Sepharose. The enzyme was obtained in a highly concentrated form after lyophilization. The enzyme appeared to be highly specific for acceptor oligosaccharides and glycoproteins carrying a terminal Gal beta 1----4GlcNAc beta 1----R unit. Characterization of products formed by the enzyme in vitro by methylation analysis and 1H NMR spectroscopy revealed that the enzyme catalyzed the formation of a GlcNAc beta 1----3Gal beta 1----4GlcNAc beta-R sequence. The enzyme therefore could be described as an UDP-GlcNAc:Gal beta 1----4GlcNAc beta-R beta 1----3-N-acetylglucosaminyltransferase. Acceptor specificity studies with oligosaccharides that form part of N-glycans revealed that the presence of a Gal beta 1----4GlcNAc beta 1----2(Gal beta 1----4GlcNAc beta 1----6)Man pentasaccharide in the acceptor structure is a requirement for optimal activity. Studies on the branch specificity of the enzyme showed that the branches of this pentasaccharide structure, when contained in tri- and tetraantennary oligosaccharides, are highly preferred over other branches for attachment of the 1st and 2nd mol of GlcNAc into the acceptor molecule. The enzyme also showed activity toward oligosaccharides related to blood group I- and i-active polylactosaminoglycans. In addition the enzyme together with calf thymus UDP-Gal:GlcNAc beta-R beta 1----4-galactosyltransferase was capable of catalyzing the synthesis of a series of oligomers of N-acetyllactosamine. Competition studies revealed that all acceptors were acted upon by a single enzyme species. It is concluded that the N-acetylglucosaminyltransferase functions in both the initiation and the elongation of polylactosaminoglycan chains of N-glycoproteins and possibly other glycoconjugates.  相似文献   

4.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
An alpha-fucosidase has been extracted from almond meal and purified 163,000-fold to apparent homogeneity using a novel affinity ligand, N-(5-carboxy-1-pentyl)-1,5-dideoxy-1,5-imino-L-fucitol, coupled to Affi-Gel 102. Substrate specificity studies demonstrate that the enzyme hydrolyzes the alpha-fucosidic linkages in Gal(beta 1----3)(Fuc(alpha 1----4]GlcNAc(beta 1----3)Gal(beta 1----4)Glc and Gal(beta 1----4)(Fuc(alpha 1----3]GlcNAc(beta 1----3)Gal(beta 1----4)Glc at similar rates but is unable to hydrolyze Fuc(alpha 1----2)Gal, Fuc(alpha 1----6)GlcNAc, or the synthetic substrate, p-nitrophenyl alpha-L-fucopyranoside. Hence, the enzyme closely resembles an alpha-fucosidase I isolated previously from a commercial preparation of partially purified almond beta-glucosidase (Ogata-Arakawa, M., Muramatsu, T., and Kobata, A. (1977) Arch. Biochem. Biophys. 181, 353-358). However, native and subunit relative molecular masses of 106,000 and 54,000 respectively, different charge and hydrophobicity properties, and the absence of stimulation by NaCl clearly distinguish this enzyme, designated alpha-fucosidase III, from other almond alpha-fucosidases reported previously.  相似文献   

6.
Treatment of blood group A active glycoprotein from human ovarian cyst fluid by one stage of Smith degradation followed by alkaline beta-elimination in the presence of NaB[ 3H4 ] (Carlson degradation) liberated tritiated oligosaccharide alditols. The carbohydrate mixture was fractionated by gel filtration, elution from charcoal, paper chromatography, and high pressure liquid chromatography. Structures were established based on sugar composition, periodate oxidation, methylation analysis, and analysis of oligosaccharide alditols as permethylated and N-trifluoroacetylated derivatives by gas-liquid chromatography-mass spectrometry. The following structures have been deduced: Gal beta 1----3GalNAc-ol, GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1---- 3GlcNAc beta 1----6(3-deoxy)GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1----3[GlcNAc beta 1----6]GalNAc-ol, Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3[Gal beta 1----4GlcNAc beta 1----6]Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol. The smaller structures represent pieces of the larger structures. Together they provide direct evidence for the core structure of the carbohydrate side chains in the blood group substances as proposed by K. O. Lloyd and E. A. Kabat [1968) Proc. Natl. Acad. Sci. U.S.A. 61, 1470-1477). Oligosaccharides previously isolated after Carlson degradation of intact human ovarian cyst fluid HLeb , Lea, and B substances and from human and horse B substances contained various alpha-linked L- fucopyranose and alpha-linked Gal substitutions on the composite structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Purified glycolipids were tested for their ability to serve as acceptors of [14C]fucose from GDP-[14C]fucose as catalyzed by cell-free extracts and purified membrane fractions of human colorectal carcinoma cells, SW1116, cultured in serum-free medium. Purified lactotetraosyl ceramide (Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc-Cer or LcOse4Cer) and H-1 glycolipid (Fuc alpha 1----2Gal beta 1----3GlcNAc beta 1----3Gal beta 1----4Glc-Cer or IV2 Fuc alpha LcOse4Cer) stimulated incorporation of radioactivity into lipid-soluble glycolipid at a rate greater than ten times that of Lea glycolipid [Gal beta 1----3(Fuc alpha 1----4)GlcNAc beta 1----3Gal beta 1----4Glc-Cer or III4 Fuc alpha LcOse4Cer]. The enzymatic activities in crude and purified membrane fractions were optimized for substrate concentrations (glycolipid and GDP-fucose), detergent requirement (taurocholate), pH, time and protein. The radioactive product of H-1 fucosylation migrated as discrete and distinct bands on high-performance thin-layer chromatograms (HPTLC). Evidence for their identity with Leb fucolipid described previously [Fuc alpha 1----2Gal beta 1----3(Fuc alpha 1----4)GlcNAc beta 1----3Gal beta 1----4Glc-Cer or III4IV2 (Fuc alpha) LcOse4Cer] is presented. The radioactive product of LcOse4Cer fucosylation was mainly Lea fucolipid as determined by co-migration with authentic Lea fucolipid in three HPTLC systems as native and acetylated derivatives. Our results also indicated a low level of H-1 and Leb glycolipid synthesis from LcOse4Cer. On the basis of the optima, linearity for time, and enzyme-limiting conditions, we obtained a 12-19-fold purification of the LcOse4Cer and H-1 fucosyl transferase acceptor activities in three peaks of a sucrose gradient. The peak with the highest specific activity (peak 3) was highest in density and in Na+, K+, ATPase specific activity, although NADH-cytochrome-c reductase and UDP-GalNac transferase were also present in peak 3. The apparent Km values of LcOse4Cer acceptor activity and H-1 acceptor activity in peak 3 were significantly different (p less than 0.01) by statistical tests, 2.4 microM and 0.5 microM, respectively. These apparent Km values were much lower (10(3) X) and the pH optima were lower (4.8-5.3), than the corresponding properties reported for the alpha 1----3/alpha 1----4 fucosyl transferase purified from human milk. Our results suggest a role for the non-glycosidic moieties of the acceptors and/or the tissue-specific or primitive expression of these fucosyl transferase activities.  相似文献   

8.
The assignment of the 13C- and 1H-NMR spectra of eight oligosaccharides of the lacto-N-tetraose and neotetraose series was obtained from homonuclear and heteronuclear correlation spectroscopy. These analyses were performed on the following compounds: 1. Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 2. NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc; 3. Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 4. NeuAc alpha 2-3Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 5. NeuAc alpha 2-3Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-4Glc; 6. Fuc alpha 1-2Gal beta 1-3[NeuAc alpha 2-6]GlcNAc beta 1-3Gal beta 1-4Glc; 7. Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc; 8. NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc.  相似文献   

9.
Human blood group O plasma was found to contain an N-acetylgalactosaminyltransferase which catalyzes the transfer of N-acetylgalactosamine from UDP-GalNAc to Gal beta 1-->4Glc, Gal beta 1-->4GlcNAc, asialo-alpha 1-acid glycoprotein, and Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4Glc-ceramide, but not to Gal beta 1-->3GlcNAc. The enzyme required Mn2+ for its activity and showed a pH optimum at 7.0. The reaction products were readily hydrolyzed by beta-N-acetylhexosaminidase and released N-acetylgalactosamine. Apparent Km values for UDP-GalNAc, Mn2+, lactose, N-acetyllactosamine, and terminal N-acetyllactosaminyl residues of asialo-alpha 1-acid glycoprotein were 0.64, 0.28, 69, 20, and 1.5 mM, respectively. Studies on acceptor substrate competition indicated that all the acceptor substrates mentioned above compete for one enzyme, whereas the enzyme can be distinguished from an NeuAc alpha 2-->3Gal beta-1,4-N-acetylgalactosaminyltransferase, which also occurs in human plasma. The methylation study of the product formed by the transfer of N-acetylgalactosamine to lactose revealed that N-acetylgalactosamine had been transferred to the carbon-3 position of the beta-galactosyl residue. Although the GalNAc beta 1-->3Gal structure is known to have the blood group P antigen activity, human plasma showed no detectable activity of Gal alpha 1-->4Gal beta-1,3-N-acetylgalactosaminyltransferase, which is involved in the synthesis of the major P antigen-active glycolipid, GalNAc beta 1-->3Gal alpha 1-->4Gal beta 1-->4Glc-ceramide. Hence, the GalNAc beta 1-->3Gal beta 1-->4GlcNAc/Glc structure is synthesized by the novel Gal beta 1-->4GlcNAc/Glc beta-1,3-N-acetylgalactosaminyltransferase.  相似文献   

10.
Many human carcinomas accumulate a large quantity of glycolipids having X (Gal beta 1----4[Fuc alpha 1----3] GlcNAc) as well as di- or trimeric X determinant (Gal beta 1----4 [Fuc alpha 1----3] GlcNAc beta 1----3Gal beta 1----4 [Fuc alpha 1----3]GlcNAc beta 1----3Gal) (e.g. Hakomori, S., Nudelman, E., Levery, S. B., and Kannagi, R. (1984) J. Biol. Chem. 259, 4672-4680). The enzymatic basis of this phenomenon has been investigated with human small cell lung carcinoma NCI-H69 cells, in which a series of these structures has been found to accumulate. An alpha 1----3 fucosyltransferase solubilized from the membrane fraction with Triton X-100 catalyzed not only the transfer of a fucosyl residue from GDP-fucose to the penultimate GlcNAc residue of lactoneotetraosylceramide (nLc4) and lactonorhexaosylceramide (nLc6), but also to the internal GlcNAc residue (III-GlcNAc) of y2 glycolipid (V3FucnLc6) and that of sialosyl2----6lactonorhexaosylceramide (VI6NeuAcnLc6). No transfer of fucose to the internal GlcNAc (III-GlcNAc) of lactonorhexaosylceramide occurred, unless the above substitutions (V3Fuc or VI6NeuAc) were present. Fucosylation at V-GlcNAc and III-GlcNAc of nLc6 could be catalyzed by the same enzyme, based on the following observations: (i) fucosylation at both III- and V-GlcNAc was competitively inhibited by V3FucnLc6 and III3V3Fuc2nLc6; (ii) the same conditions (pH, bivalent cation, detergent) were optimal for fucosylation at both III- and V-GlcNAc; (iii) the Km values of the enzyme for nLc4, nLc6, and V3FucnLc6 were approximately the same; and (iv) the activity of the enzyme catalyzing fucosylation at both III- and V-GlcNAc was adsorbed on GDP-hexanolamine-Sepharose and was not inhibited by N-ethylmaleimide. The enzyme preferentially transferred fucose to the penultimate VGlcNAc, followed by transfer to the internal III-GlcNAc of nLc6. Thus, the pathway for synthesis of dimeric X proceeds as follows: nLc6----V3FucnLc6----III3V3Fuc2nLc6. No mechanism was found to operate for chain elongation of the X hapten structure through addition of GlcNAc residues to the terminal Gal of the X hapten.  相似文献   

11.
The carbohydrate chains linked to human kappa-casein from mature milk were released by alkaline borohydride treatment as reduced oligosaccharides. The neutral oligosaccharides of lower molecular weight were fractionated and purified by gel filtration and preparative thin layer chromatographies. Seven neutral oligosaccharides (a di- (0.5%), two tetra- (30.5%), two penta- (5.4%) and two hexasaccharide alditols (10.9%] were obtained in homogeneity, and followed by methylation analysis with gas-liquid chromatography-mass spectrometry and by anomer analysis with 13C nuclear magnetic resonance. Their chemical structures were identified to be Gal beta 1----3GalNAc-ol (I), Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (II), Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (III), GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (IV), GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (V), Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol (VI) and Fuc alpha 1----4GlcNAc beta 1----3/6Gal beta 1----3[Fuc alpha 1----4GlcNAc beta 1----6]GalNAc-ol (VII). Five oligosaccharide alditols (III-VII) were the novel carbohydrate chains of kappa-casein from mammalian milk.  相似文献   

12.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   

13.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans beta-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo beta-D-galactopyranoside (S6Gal beta-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Gal beta1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal beta1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Gal beta1-2Glc was mainly produced along with beta-(1-1)alpha, beta-(1-3), beta-(1-6) isomers in 74% total yield. When methyl alpha-D-glucopyranoside (Glc alpha-OMe) was an acceptor, the enzyme also formed mainly S6Gal beta1-2Glc alpha-OMe with its beta-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of beta-(1-2)-linked disaccharides. In contrast, with the corresponding methyl beta-D-glucopyranoside (Glc beta-OMe) acceptor, S6Gal beta1-3Glc beta-OMe and S6Gal beta1-6Glc beta-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the beta-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

14.
Sulfated N-linked carbohydrate chains in porcine thyroglobulin   总被引:3,自引:0,他引:3  
N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on Lichrosorb-NH2, and analyzed by 500-MHz 1H-NMR spectroscopy and, partially, by permethylation analysis. Of the acidic oligosaccharide-alditols, the following sulfated carbohydrate chains could be identified: NeuAc alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3[(SO3Na----3)Gal beta 1----4GlcNAc beta1----2-Mana alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc-ol and NeuAc alpha 2----6Gal beta 1----4(SO3Na----)0-1 GlcNAc beta 1----2-Man alpha 1----3[NeuAc alpha 2----6Gal beta 1----4(SO3Na----6)1-0GlcNAc beta 1----2Man alpha 1----6]Man beta 1----4GlcNAc beta 1----4[Fuc alpha 1----6]GlcNAc- ol. The sulfated structural elements for porcine thyroglobulin form novel details of N-linked carbohydrate chains. They contribute to the fine structure of these oligosaccharides and are another type of expression of microheterogeneity.  相似文献   

15.
A UDP-GlcNAc:R1-beta 1-3Gal(NAc)-R2 [GlcNAc to Gal(NAc)] beta 6-N-acetylglucosaminyltransferase activity from pig gastric mucosa microsomes catalyzes the formation of GlcNAc beta 1-3(GlcNAc beta 1-6)Gal-R from GlcNAc beta 1-3Gal-R where -R is -beta 1-3GalNAc-alpha-benzyl or -beta 1-3(GlcNAc beta 1-6)GalNAc-alpha-benzyl. This enzyme is therefore involved in the synthesis of the I antigenic determinant in mucin-type oligosaccharides. The enzyme also converts Gal beta 1-3Gal beta 1-4Glc to Gal beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc. The enzyme was stimulated by Triton X-100 at concentrations between 0 and 0.2% and was inhibited by Triton X-100 at 0.5%. There is no requirement for Mn2+ and the enzyme activity is reduced to 65% in the presence of 10 mM EDTA. Enzyme products were purified and identified by proton NMR, methylation analysis and beta-galactosidase digestion. Competition studies suggest that this pig gastric mucosal beta 6-GlcNAc-transferase activity is due to the same enzyme that converts Gal beta 1-3GalNAc-R to mucin core 2, Gal beta 1-3(GlcNAc beta 1-6)GalNAc-R, and GlcNAc beta 1-3GalNAc-R to mucin core 4, GlcNAc beta 1-3(GlcNAc beta 1-6)GalNAc-R. Substrate specificity studies indicate that the enzyme attaches GlcNAc to either Gal or GalNAc in beta (1-6) linkage, provided these residues are substituted in beta (1-3) linkage by either GlcNAc or Gal. The insertion of a GlcNAc beta 1-3 residue into Gal beta 1-3GalNAc-R to form GlcNAc beta 1-3Gal beta 1-3GalNAc-R prevents insertion of GlcNAc into GalNAc. These studies establish several novel pathways in mucin-type oligosaccharide biosynthesis.  相似文献   

16.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

17.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

18.
The structure of a nonasaccharide and of two decasaccharides isolated from human milk has been investigated by using methylation, fast atom bombardment mass spectrometry and 1H-/13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides were: trifucosyllacto-N-hexaose; Fuc alpha 1-2Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3[Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6]Gal beta 1-4Glc, difucosyllacto-N-octaoses; Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc and Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Fuc alpha 1-3 Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc. The two decasaccharides possess a new type of core structure proposed to be named iso-lacto-N-octaose.  相似文献   

19.
UDP-GlcNAc:Gal beta 1-3GalNAc-R beta 1,6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) (i.e., core 2 GlcNAc-T) is a developmentally regulated enzyme of the O-linked oligosaccharide biosynthesis pathway. We have developed a coupled-enzyme assay for core 2 GlcNAc-T that is approximately 100 times more sensitive than the standard assay using UDP-[3H]GlcNAc as a sugar donor. Core 2 GlcNAc-T reactions were performed using unlabeled UDP-GlcNAc donor and Gal beta 1-3GalNAc alpha-paranitrophenyl (pNp) as acceptor. The product, Gal beta 1-3(GlcNAc beta 1-6)GalNAc alpha-pNp was then further reacted with purified bovine beta 1-4Gal-T and UDP-[3H]Gal to produce Gal beta 1-3([3H]Gal beta 1-4GlcNAc beta 1-6) GalNAc alpha-pNp, which was separated on an Ultrahydrogel HPLC column. Approximately 10% of the available GlcNAc-terminating acceptor was substituted in the Gal-T reaction, allowing 1 pmol of product to be readily detected. The increased sensitivity of the coupled assay should facilitate studies of core 2 GlcNAc-T activity where material is limiting or specific activity is low.  相似文献   

20.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号