首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
Trimebutine (2-dimethylamino-2-phenylbutyl 3,4,5-trimethoxybenzoate, hydrogen maleate) relieves abdominal pain in humans. In the present study, the antinociceptive action of systemic (S)-N-desmethyl trimebutine, a stereoisomer of N-monodesmethyl trimebutine, the main metabolite of trimebutine in humans, was studied in a rat model of neuropathic pain produced by chronic constriction injury to the sciatic nerve. Mechanical (vocalization threshold to hindpaw pressure) stimulus was used. Experiments were performed two weeks after surgery when the pain-related behaviour has fully developed. (S)-N-desmethyl trimebutine (1, 3, 10 mg/kg s.c.) produced dose-dependent antinociceptive effects on the nerve-injured and the contralateral hindpaw. The effect of the lowest dose (1 mg/kg s.c.) of (S)-N-desmethyl trimebutine on the nerve-injured paw was equal to that seen after a ten time stronger dose on the contralateral paw. The effect of (S)-N-desmethyl trimebutine (1 mg/kg) was not naloxone reversible. The results suggest that systemic (S)-N-desmethyl trimebutine may be useful in the treatment of some aspects of neuropathic pain.  相似文献   

2.

Objective

To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain.

Methods

Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot.

Results

Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.).

Conclusion

ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.  相似文献   

3.
Developing a successful treatment strategy for neuropathic pain has remained a challenge among researcher and clinicians. Various animal models have been employed to understand the pathogenic mechanism of neuropathic pain in experimental animals. The present study was designed to explore the possible nitric oxide mechanism in the protective effect of melatonin against chronic constriction injury (CCI) of sciatic nerve in rats. Following chronic constriction injury, various behavioral tests (thermal hyperalgesia, cold allodynia) and biochemical parameters (lipid peroxidation, reduced glutathione, catalase, and nitrite) were assessed in sciatic nerves. Drugs were administered for 21 consecutive days from the day of surgery. CCI significantly caused thermal hyperalgesia, cold allodynia and oxidative damage. Chronic administration of melatonin (2.5 or 5 mg/kg, ip) significantly attenuated hyperalgesia, cold allodynia and oxidative damage in sciatic nerves as compared to CCI group. Further, L-NAME (5 mg/kg) pretreatment with sub-effective dose of melatonin (2.5 mg/kg, ip) significantly potentiated melatonin's protective effect which was significant as compared to their individual effect per se. However, L-arginine (100 mg/kg) pretreatment with melatonin (2.5 mg/kg, ip) significantly reversed its protective effects. Results of the present study suggest the involvement of nitric oxide pathway in the protective effect of melatonin against CCI-induced behavioral and biochemical alterations in rats.  相似文献   

4.
目的:探讨外源性的电磁干预方法对神经病理性疼痛大鼠的镇痛效果。方法:将30只成熟的雄性SD大鼠随机等分成3组:空白对照组(Control),坐骨神经慢性压迫损伤(CCI)组以及坐骨神经慢性压迫损伤协同电磁刺激组(CCI+EMF)。CCI组和CCI+EMF组的20只大鼠建立坐骨神经慢性压迫损伤模型,CCI+EMF组大鼠行外源性的全身性电磁刺激干预(脉冲波形,频率15 Hz,强度30 Gs),每天刺激6小时。在CCI模型构建的第0、3、6、9、12及15天对大鼠测试和比较足底机械痛阈值、足底热痛阈值、运动功能评分和神经传导速率。结果:CCI组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率从CCI手术后的第3天即出现显著性降低,其6、9、12、15天足底机械痛阈值、足底热痛阈值及感觉神经传导速率均显著低于Control组(P0.01),而运动功能评分均显著高于Control组(P0.05)。CCI+EMF组大鼠的足底机械痛阈值、足底热痛阈值及感觉神经传导速率在第9、12、15天显著高于CCI组大鼠(P0.05),而运动功能评分均显著高于CCI l组。结论:外源性的电磁刺激对于神经病理性疼痛大鼠具有良好的镇痛效果,有望成为一种临床治疗神经病理性疼痛的新的物理治疗手段。  相似文献   

5.
AimsIbuprofen arginate is a highly soluble salt formed by combining racemic ibuprofen with the amino acid l-arginine. This formulation is absorbed faster, and it is safe and effective in treating many forms of mild to moderate pain. We compared the analgesic effect of ibuprofen arginate and conventional ibuprofen in rat models of pain.Main methodsMechanical and cold allodynia were assessed in the chronic constriction injury (CCI) model of neuropathic pain, and mechanical allodynia was also examined in capsaicin-injected rats (a model of central sensitization). Inflammatory hypersensitivity was assessed with the formalin test. Ibuprofen-l-arginine, ibuprofen, l-arginine or saline was administered orally on a daily basis after CCI or capsaicin injection, and the von Frey and cold plate tests were performed on days 1, 3 and 7 after CCI or capsaicin administration. In the formalin-induced inflammatory pain test, the drugs were administered 30 min before formalin injection.Key findingsIbuprofen only exerts an antinociceptive effect in the formalin model whereas ibuprofen-l-arginine exerts antinociceptive effects on both mechanical and cold allodynia induced by CCI, mechanical allodynia induced by capsaicin injection, and in phase 2 of the formalin test, exhibiting superior antinociceptive activity to ibuprofen in all these tests. l-Arginine only exerted antinociceptive effects on cold allodynia in CCI.SignificanceThese results demonstrate that ibuprofen arginate has stronger antinociceptive effects than ibuprofen in all the models used, suggesting it might improve the therapeutic management of neuropathic and inflammatory pain.  相似文献   

6.
AimsWe examined the possible involvement of spontaneous on-going pain in the rat chronic constriction injury (CCI) model of neuropathic pain.Main methodsThe development of weight bearing deficit, as an index of spontaneous on-going pain, was investigated in comparison to that of mechanical allodynia in CCI rats. We also examined the effects of morphine and a gabapentin analogue (1S, 3R)-3-methyl-gabapentin (3-M-gabapentin) on both the CCI-induced weight bearing deficit and mechanical allodynia.Key findingsRats with CCI demonstrated a significant reduction in weight bearing of the injured limb with a peak at a week post-operation, which was followed by a gradual recovery for over 7 weeks. The time course of development and recovery of CCI-induced weight bearing deficit appeared to follow that of foot deformation of the affected hind limb. CCI also evoked mechanical allodynia that was fully developed on a week post-operation, but showed no recovery for at least 8 weeks. 3-M-gabapentin significantly inhibited CCI-induced mechanical allodynia, but not weight bearing deficit, at 100 mg/kg p.o. Likewise, morphine was without significant effect on CCI-induced weight bearing deficit at the dose (3 mg/kg, s.c.) that could almost completely inhibit mechanical allodynia, whereas it inhibited both mechanical allodynia and weight bearing deficit at 6 mg/kg, s.c.SignificanceThe present findings suggest that CCI-induced weight bearing deficit is not a consequence of mechanical allodynia, but is attributable to spontaneous on-going pain. The rat CCI model of neuropathic pain thus represents both spontaneous on-going pain and mechanical allodynia.  相似文献   

7.
目的:观察坐骨神经慢性压榨损伤(CCI)致神经病理痛后,大鼠背根节神经元GABAA受体(γ-氨基丁酸A受体)激活电流的变化。方法:运用全细胞膜片钳技术记录CCI模型手术侧、手术对侧及假手术组大鼠背根神经节细胞GABAx受体激活电流,比较坐骨神经慢性压榨损伤后GABAA受体激活电流的变化。结果:①CCI模型组大鼠手术侧DRG神经元在不同浓度(0.1-1000μmol/L)GABAA受体激活电流幅值均显著小于假手术组。②CCI模型组大鼠手术对侧DRG神经元在不同浓度(0.01-1000μmol/L)GABAA受体激活电流幅值均显著大于手术同侧及假手术组。结论:在坐骨神经慢性压榨损伤的过程中,不仅损伤侧的DRG神经元GABAA受体激活电流显著减小,这种损伤同时还引起了手术对侧的DRG神经元GABA激活电流代偿性的增强,GABAA受体功能的改变导致的突触前抑制作用的减弱可能是神经病理痛产生的根本原因之一。  相似文献   

8.
A new operant test for preclinical pain research, termed the Mechanical Conflict System (MCS), is presented. Rats were given a choice either to remain in a brightly lit compartment or to escape to a dark compartment by crossing an array of height-adjustable nociceptive probes. Latency to escape the light compartment was evaluated with varying probe heights (0, .5, 1, 2, 3, and 4 mm above compartment floor) in rats with neuropathic pain induced by constriction nerve injury (CCI) and in naive control rats. Escape responses in CCI rats were assessed following intraperitoneal administration of pregabalin (10 and 30 mg/kg), morphine (2.5 and 5 mg/kg), and the tachykinin NK1 receptor antagonist, RP 67580 (1 and 10 mg/kg). Results indicate that escape latency increased as a function of probe height in both naive and CCI rats. Pregabalin (10 and 30 mg/kg) and morphine (5 mg/kg), but not RP 67580, decreased latency to escape in CCI rats suggesting an antinociceptive effect. In contrast, morphine (10 mg/kg) but not pregabalin (30 mg/kg) increased escape latency in naive rats suggesting a possible anxiolytic action of morphine in response to light-induced fear. No order effects following multiple test sessions were observed. We conclude that the MCS is a valid method to assess behavioral signs of affective pain in rodents.  相似文献   

9.
The synthetic peptide identical to the C-terminus of murine S100A9 protein (mS100A9p) has antinociceptive effect on different acute inflammatory pain models. In this study, the effect of mS100A9p was investigated on neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. Hyperalgesia, allodynia, and spontaneous pain were assessed to evaluate nociception. These three signs were detected as early as 2 days after sciatic nerve constriction and lasted for over 14 days after CCI. Rats were treated with different doses of mS100A9p by intraplantar, oral, or intrathecal routes on day 14 after CCI, and nociception was evaluated 1h later. These three routes of administration blocked hyperalgesia, allodynia and spontaneous pain. The duration of the effect of mS100A9p depends on the route used and phenomenon analyzed. Moreover, intraplantar injection of mS100A9p in the contralateral paw inhibited the hyperalgesia on day 14 days after CCI. The results obtained herein demonstrate the antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic pain, suggesting a potential therapeutic use for it in persistent pain syndromes, assuming that tolerance does not develop to mS100A9p.  相似文献   

10.
Neuropathic pain is a major health issue that represents considerable social and economic burden worldwidely. In this study, we investigated the potential of catalpol, an iridoid glucoside of Rehmannia glutinosa Steud, to alleviate neuropathic pain. The potential analgesic effects of catalpol were evaluated by chronic constriction injury (CCI) and lumbar 5 spinal nerve ligation (L5 SNL) model. In addition, we explored whether catalpol altered the degree of microglia activation and neuroinflammation in rat spinal cord after CCI induction. Repeated administration of catalpol (1, 5, 25, and 125 mg/kg) reversed mechanical allodynia induced by CCI and L5 SNL in a dose-dependent manner in rats. Levels of activated microglia, activated NF-κB, and proinflammatory cytokines (IL-1β, IL-6, TNF-α) in lumber spinal cord were elevated in rats following CCI induction, and catalpol significantly inhibited these effects. Our results demonstrated that catalpol produces significant antinociceptive action in rodent behavioral models of neuropathic pain and that this effect is associated with modulation of neuroinflammation in spinal cord.  相似文献   

11.
Hu  Tingting  Sun  Qingyu  Gou  Yu  Zhang  Yurui  Ding  Yumeng  Ma  Yiran  Liu  Jing  Chen  Wen  Lan  Ting  Wang  Peipei  Li  Qian  Yang  Fei 《Neurochemical research》2022,47(2):493-502

Neuropathic pain is one of the most common conditions requiring treatment worldwide. Salidroside (SAL), a phenylpropanoid glucoside extracted from Rhodiola, has been suggested to produce an analgesic effect in chronic pain. However, whether SAL could alleviate pain hypersensitivity after peripheral nerve injury and its mode of action remains unclear. Several studies suggest that activation of the spinal NOD-like receptor protein 3 (NLRP3) inflammasome and its related proteins contribute to neuropathic pain’s pathogenesis. This study investigates the time course of activation of spinal NLRP3 inflammasome axis in the development of neuropathic pain and also whether SAL could be an effective treatment for this type of pain by modulating NLRP3 inflammasome. In the chronic constriction injury (CCI) mice model, spinal NLRP3 inflammasome-related proteins and TXNIP, the mediator of NLRP3, were upregulated from the 14th to the 28th day after injury. The TXNIP and NLRP3 inflammasome-related proteins were mainly present in neurons and microglial cells in the spinal dorsal horn after CCI. Intraperitoneal injection of SAL at 200 mg/kg for 14 consecutive days starting from the 7th day of CCI injury could ameliorate mechanical and thermal hypersensitivity in the CCI model. Moreover, SAL inhibited the activation of the TXNIP/NLRP3 inflammasome axis and mitigated the neuronal loss of spinal dorsal horn induced by nerve injury. These results indicate that SAL could produce analgesic and neuroprotective effects in the CCI model of neuropathic pain.

  相似文献   

12.
Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D -aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.  相似文献   

13.
目的探讨川芎嗪对慢性压迫性损伤(CCI)大鼠行为学的影响。方法建立大鼠坐骨神经CCI神经病理痛模型,取40只雄性大鼠随机分成4组,Ⅰ组为空白对照组,Ⅱ组为假手术组,Ⅲ组为CCI+川芎嗪治疗组,Ⅲ组在术后第1天开始腹腔注射100 mg/kg川芎嗪注射液,Ⅳ组为CCI手术组。分别于术前(0 d)及术后1、3、5、7、91、1、14 d以von Frey细丝法和热辐射法测定机械缩足反射阈值(mechanical withdrawal threshold,MWT)和热缩足反射潜伏期(thermal withdrawal latency,TWL),观察CCI大鼠神经病理痛的行为学变化。结果术后14 d,Ⅳ组和I、Ⅱ、Ⅲ组相比较,大鼠后爪的机械和热痛敏阈值明显降低(P〈0.01);I、Ⅱ、Ⅲ组之间相比,大鼠后爪的机械和热痛敏阈值差异没有显著性(P〉0.05)。结论川芎嗪可以缓解CCI大鼠的慢性神经病理痛行为学表现。  相似文献   

14.
Interleukin 2-induced antinociception partially coupled with mu receptor   总被引:3,自引:0,他引:3  
Song P  Zhao Z 《Cytokine》2000,12(8):1240-1242
The present study was designed to investigate the involvement of mu receptor in interleukin 2-induced antinociception. Intraplantar injection of human recombinant interleukin 2 (rIL-2) (1. 5x10(4) U) significantly enhanced pain threshold as measured by paw withdrawal latencies (PWLs) to noxious radiant heat in normal rats. After administration of rIL-2, PWLs were also markedly increased in morphine-tolerant and chronic constriction injury (CCI)-operated rats, which have been proven morphine-insensitive. rIL-2-induced antinociception in both morphine-tolerant and CCI-operated rats was significantly lower than that in normal rats. rIL-2 antinociception was partially blocked by naloxone (1 mg/kg i.p.) in normal rats but remained unchanged in the CCI group. Our results suggest that the use of rIL-2 in human medical practice may be extended for its effectiveness in relief of neuropathic pain induced by CCI. Here we infer that mu receptor plays an critical role in IL-2-induced antinociception and that there are also some other receptors involved in this process.  相似文献   

15.
To clarify the role of angiotensin II (Ang II) in the regulation of sensory signaling, we studied the effect of subpressor dose (150 ng/kg/min) of Ang II on pain-related behavior in relation with neuronal injury and activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRGs) after chronic constriction injury (CCI). Systemic continuous delivery of Ang II induced the tactile, heat and cold hyperlagesia, when measured at 7 days ofpost-injury. Blockade of the AT1 receptor with losartan (2.5 mg/kg/day) prevented tactile hyperalgesia and attenuated cold hyperalgesia, but did not affect the response to noxious heat stimulus. A marked increase of large-sized injured primary afferent neurons, detected by ATF3 immunolabeling, was seen in lower lumbar DRGs on ipsilateral side after Ang II treatment. Subpressor dose of Ang II induced an increase of activated SGCs (detected by GFAP immunolabeling) enveloping large-diameter neurons. Our results suggested that Ang II through the AT1 receptor activation is an important regulatory factor in neuropathic pain perception and plays an important role in the injury of large-sized primary afferent neurons and activation of SGCs elicited by the CCI.  相似文献   

16.
Han M  Huang RY  Du YM  Zhao ZQ  Zhang YQ 《生理学报》2011,63(2):106-114
本文采用大鼠坐骨神经慢性压迫损伤引起的神经病理痛模型,研究脊髓背角细胞外信号调节激酶(extracellular signal-regulatedkinase,ERK)在外周神经损伤引起的神经病理疼痛发生中的作用.结果显示,单侧坐骨神经压迫性损伤后1天,大鼠损伤侧脊髓背角ERK的磷酸化(激活)水平显著上调,其下游转录因...  相似文献   

17.
We investigate the antinociceptive effect of intrathecal and intraperitoneal tempol administration in a rat model of chronic constriction injury (CCI)-induced neuropathic pain and explore the underlying antinociceptive mechanisms of tempol. Rats were randomly assigned to four groups (n = 8 per group): sham group, CCI group, Tem1 group (intrathecal injection of tempol), and Tem2 group (intraperitoneal injection of tempol). Neuropathic pain was induced by CCI of the sciatic nerve. Tempol was intrathecally or intraperitoneally administered daily for 7 days beginning on postoperative day one. The mechanical withdrawal threshold and thermal withdrawal latency were tested on preoperative day 3 and postoperative days 1, 3, 5, 7, 10, 14, and 21. Structural changes were examined by hematoxylin and eosin staining, toluidine blue staining, and electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using the thiobarbituric acid and nitroblue tetrazolium methods, respectively. Nerve growth factor (NGF) expression levels were determined by immunohistochemistry and Western blot. Intrathecal, but not intraperitoneal, injection of tempol produced a persistent antinociceptive effect. Intraperitoneal injection of tempol did not result in high enough concentration of tempol in the cerebrospinal fluid. Intrathecal, but not intraperitoneal, injection of tempol inhibited CCI-induced structural damage in the spinal cord reduced MDA levels, and increased SOD activities in the spinal cord. Furthermore, intrathecal, but not intraperitoneal, injection of tempol further downregulated the expression of NGF in the spinal cord following CCI, and this effect was blocked by p38MAPK inhibitor. Intrathecal injection of tempol produces antinociceptive effects and reduces CCI-induced structural damage in the spinal cord by increasing SOD activities and downregulating the expression of NGF via the p38MAPK pathway. Intraperitoneal administration of tempol does not exhibit antinociceptive effects.  相似文献   

18.
PK Chao  KT Lu  YL Lee  JC Chen  HL Wang  YL Yang  MY Cheng  MF Liao  LS Ro 《PloS one》2012,7(8):e43680
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 μg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.  相似文献   

19.
20.
Neuropathic pain is initiated or caused due to the primary lesion or dysfunction in the nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, neuroinflammation and apoptosis. Oxidative/nitrosative stress aggravates the neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of the phytoconstituent; morin in chronic constriction injury (CCI) induced neuropathy. Neuropathic pain was induced by chronic constriction of the left sciatic nerve in rats, and the effect of morin (15 and 30 mg/kg, p.o.) was evaluated by measuring behavioural and biochemical changes. Mechanical, chemical and thermal stimuli confirmed the CCI-induced neuropathic pain and treatment with morin significantly improved these behavioural deficits and improved the sciatic functional index by the 14th day after CCI induction. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers were elevated in rat lumbar spinal cord. Oxidative stress induced PARP overactivation resulted in depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR). Treatment with morin reduced the levels of nitrites, restored glutathione levels and abrogated the oxidant induced DNA damage. It also mitigated the increased levels of TNF-α and IL-6. Protein expression studies confirmed the PARP inhibition and anti-inflammatory activity of morin. Findings of this study suggest that morin, by virtue of its antioxidant properties, limited PARP overactivation and neuroinflammation and protected against CCI induced functional, behavioural and biochemical deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号