首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electric quadrupole moment of the deuterium nucleus provides a nuclear magnetic resonance (NMR) probe of electric field gradients, and thereby of organization of tissue water. 8-17% of H2O in rat muscle and brain was replaced by D2O from 50% deuterated drinking water. The peak height of the steady-state NMR spectrum of D in muscle water was 74% lower than that of an equal concentration of D2O in liquid water. Longitudinal NMR relaxation times (T1) of D in water of muscle and brain averaged 0.092 and 0.131 sec, respectively, compared with 0.47 sec in D2O in liquid water. Transverse NMR relaxation times (T2) averaged 0.009 and 0.022 sec in D2O of muscle and brain, respectively, compared with 0.45 sec in D2O in liquid water. These differences cannot be explained by paramagnetic ions or by magnetic inhomogeneities, which leaves increased organization of tissue water as the only tenable hypothesis. Evidence was also obtained that 27% of muscle water and 13% of brain water exist as a separate fraction with T2 of D2O less than 2 × 10-3 sec, which implies an even higher degree of structure. Each of the two fractions may consist of multiple subfractions of differing structure.  相似文献   

2.
The proton and deuterium longitudinal relaxation rates were Studied at room temperature up to the highest protein concentrations in oxyhaemoglobin solutions of different H2O/D2O composition. The deuterium relaxation rates followed the experimentally well known single linear dependence on protein concentration, the slopes being little influenced by solvent (D2O/H2O) composition. The proton ralaxation rates show two different liner dependences on haemoglobin concentration. The entire concentration range is described by two straight lines with the threshold concentration about 11 mM (in haem), The ratio of the slopes is 1.6 (high-to-low Hb-conc.). Only in the higher concentration range two T1's were observed if the solvent contained more than half of D2O. The slow relaxation phase of protons has T1's similar to those measured in solutions with less than half of D2O. The relaxation of the other phase was ten times faster. The ratio of the proton populations in these two phases was equal to 2 (slow-to-fast) and independent of protein concentration. The fast relaxing protons are attributed to water molecules encaged within two or more haemoglobin molecules which associate for times long enough on the PMR time-scale.  相似文献   

3.
The thermal perturbation difference spectra of phenolic and indolic chromophores in water resemble the isothermal D2O and H2O spectra of these chromophores. For phenols approximately equal Δ? values are obtained in both types of spectra, but for their methyl ethers Δ? values of D2O vs H2O spectra are about half of those of the thermal perturbation spectra. Phenols and their methyl ethers were studied in deuterated ethylene glycol and glycerol vs the corresponding protiated solvent, and in nonprotic solvents containing 0.25–4% D2O or H2O. For phenols in D2O vs H2O, about one-third to one-half of the difference spectrum is attributed to solvent structure difference, and the remainder to the effects of replacing OH by OD and to differences in accepting hydrogen bonds from D2O and H2O. The refractive index difference between D2O and H2O was shown to be a minor contribution by means of experiments in which D2O was at 5 dgC and H2O at 47 dgC, conditions of equal refractive index (NaD). D2O vs H2O and glycerol-d vs glycerol-h difference spectra of ribonuclease are about twice as large as expected from the known number of exposed tyrosyl side chains. Possible sources of error in D2O vs H2O spectra of proteins are discussed.  相似文献   

4.
Summary The permeation of water molccules across single-component lecithin or lecithin-cholesterol bilayers is studied by a new technique. The new technique makes use of the different fluorescence quantum yields of appropriate molecules in D2O and H2O. Water-soluble indole derivatives which by experimental manipulation reside almost entirely within the aqueous (H2O) intravesicular compartment thus can monitor D2O molecules permeating the bilayer by virtue of an increased quantum yield of the fluorescence. In a stopped-flow instrument, a vesicle solution containing the fluorescent chromophore in the intravesicular space is rapidly mixed with the deuterated solvent. The approach to the steady state, where the intra- and extravesicular D2O and H2O concentrations are equal, proceeds in a single-exponential manner. Consequently, the exchange relaxation time for the D2O molecules passing the bilayer can be deduced from the time-dependent increase of the fluorescence intensity. The method and results on lecithin and lecithin-cholesterol bilayer vesicles are discussed. The exchange relaxation times of temperature-dependent studies are interpreted within the framework of the solubility-diffusion theory. Below the crystalline to liquid-crystalline phase transition temperature and for cholesterol-free vesicles, the rate-limiting step for the D2O permeation is attributed to the intracore diffusion. Above the phase transition and for cholesterol-containing vesicles, the intracore diffusion seems not to be rate-limiting. Deviations from the linearity below the phase transition in the Arrhenius-type presentation of the data are related to changes of the partition coefficient of water between the solvent and the lipid phase at the premelting temperature.  相似文献   

5.
We found a two-fold increase in the productivity of baker’s yeast grown on a nutrient mixture prepared in light water with a D2O content (127 ppm) smaller than in the distilled water (150 ppm). The number of water monomers that provides the biosynthetic activity (water transport through membrane channels) of yeast cells with an increased CO2 yield was determined for the first time. We established that the selectivity of cell membrane channels in water of different composition depends not only on the motion of ortho-and para-spin H2O isomers in solution, as was shown earlier, but also on the concentration of D2O.  相似文献   

6.
The molecular order of water in liquid-crystalline 5-28% tobacco mosaic virus (TMV) solutions was studied by proton spin-spin, spin-lattice, and translational self-diffusion coefficient measurements at various concentrations as well as by deuteron D2O nuclear magnetic resonance (NMR) studies. The results show that the average H2O molecule spends less than 1% of its time in an ordered state bound to the TMV backbone. The protons on the TMV molecules themselves, on the other hand have a very short spin-spin relaxation time T2 of about 20 μs, demonstrating the existence of a high degree of liquid-crystalline order.  相似文献   

7.
In the initial stages of the crystallization of egg-white lysozyme, monomeric lysozyme aggregates rapidly and forms a nucleus in the presence of high salt concentrations. The formation process of the aggregates was examined to make clear the difference between the situations in heavy water and in water at the same sodium ion concentration. The aggregation in both cases was observed at unsaturated and/or saturated lysozyme concentrations. The turbidity at 350 nm of lysozyme increased remarkably within 60 min under each experimental condition and showed no appreciable changes over 60 min. The increase of turbidity in H2O was much slower than in D2O at the same salt concentration (3%). Lysozyme showed a critical concentration for nucleus formation whose value in H2O was lower than in D2O at 3% salt concentration. There are two different aggregation models, depending on the concentration of lysozyme. However, similar results were not obtained at 3% sodium ions in H2O. The initial aggregation rate was also dependent on the concentrations of both lysozyme and NaCI. Therefore, the effect of lysozyme concentration on the aggregation process in H2O may be smaller than in D2O.  相似文献   

8.
In the initial stages of the crystallization of egg-white lysozyme, monomeric lysozyme aggregates rapidly and forms a nucleus in the presence of high salt concentrations. The formation process of the aggregates was examined to make clear the difference between the situations in heavy water and in water at the same sodium ion concentration. The aggregation in both cases was observed at unsaturated and/or saturated lysozyme concentrations. The turbidity at 350 nm of lysozyme increased remarkably within 60 min under each experimental condition and showed no appreciable changes over 60 min. The increase of turbidity in H2O was much slower than in D2O at the same salt concentration (3%). Lysozyme showed a critical concentration for nucleus formation whose value in H2O was lower than in D2O at 3% salt concentration. There are two different aggregation models, depending on the concentration of lysozyme. However, similar results were not obtained at 3% sodium ions in H2O. The initial aggregation rate was also dependent on the concentrations of both lysozyme and NaCI. Therefore, the effect of lysozyme concentration on the aggregation process in H2O may be smaller than in D2O.  相似文献   

9.
Water distribution in green coffee was studied by means of pulsed nuclear magnetic resonance (NMR). Hydration experiments for relaxometry measurements were performed by adding either H2O or D2O to dried green coffee beans up to 35% (dry basis) or, alternatively, by moisture absorption in a controlled humidity environment. The CPMG experimental relaxation decay curves were acquired using a benchtop time-domain NMR analyzer at each hydration level and as a function of time. All NMR data were fitted according to the Laplace inversion approach to obtain the proton mobility distributions of water in the hydrated beans. By comparing the T 2 relaxograms of the hydrated beans with the ones observed in the untreated raw beans, it was found that up to ??10% water exhibits a rather restricted proton mobility. Hydration experiments carried out with D2O highlighted the contribution of the chemical exchange between the water protons and those of the solid matrix to the overall NMR signal. A possible interpretation of the data in terms of the antiplasticizer and plasticizer effect of water is offered.  相似文献   

10.
The dormant cysts of Artemia undergo cycles of hydration-dehydration without losing viability. Therefore, Artemia cysts serve as an excellent intact cellular system for studying the dynamics of water-protein interactions as a function of hydration. Deuterium spin-lattice (T1) and spin-spin (T2) relaxation times of water in cysts hydrated with D2O have been measured for hydrations between 1.5 and 0.1 g of D2O per gram of dry solids. When the relaxation rates (I/T1, I/T2) of 2H and 17O are plotted as a function of the reciprocal of hydration (1/H), an abrupt change in slope is observed near 0.6 g of D2O (or H2 17O)/gram of dry solids, the hydration at which conventional metabolism is activated in this system. The results have been discussed in terms of the two-site and multisite exchange models for the water-protein interaction as well as protein dynamics models. The 2H and 17O relaxation rates as a function of hydration show striking similarities to those observed for anisotropic motion of water molecules in protein crystals.

It is suggested here that although the simple two-site exchange model or n-site exchange model could be used to explain our data at high hydration levels, such models are not adequate at low hydration levels (<0.6 g H2O/g) where several complex interactions between water and proteins play a predominant role in the relaxation of water nuclei. We further suggest that the abrupt change in the slope of I/T1 as a function of hydration in the vicinity of 0.6 g H2O/g is due to a change in water-protein interactions resulting from a variation in the dynamics of protein motion.

  相似文献   

11.
A pulsed N.M.R study of D2O bound to 1,2 dipalmitoyl phosphatidylcholine   总被引:1,自引:0,他引:1  
Spin lattice relaxation times in both the lab and rotating frame, have been measured for deuterons (2H) in a number of unsonicated dispersions of 1,2 dipalmitoyl phosphatidylcholine in D2O over a range of resonant frequencies from 13 MHz to 1 MHz for temperatures from ?20°C to 65°C.The proton (1H) spin lattice relaxation time for the lecithin was measured for resonant frequencies of 8.5 MHz, and 40 MHz over a similar range of temperatures.The results agree with broadline measurements by Salsbury et al. [1], and for the liquid crystal phase are consistent with an anisotropic tumbling model of the water molecules bound to the lecithin headgroup. This tumbling occurs with correlation times of ≤10?10 sec and ≈ 10?6 sec about axes parallel to and perpendicular to the bisector of the D-O-D angle within a D2O molecule, hydrogen bonded to the negatively charged phosphate headgroup.  相似文献   

12.
Error-prone polymerase chain reactions (epPCRs) are often used to introduce mutations in random mutagenesis, which has been used as a tool in protein engineering. Here, we developed a new method of epPCR using heavy water as a solvent instead of normal water (H2O). Rhodopsin cDNA of the Ayu fish (Plecoglossus altivelis) was used as a template and was amplified using five different conditions: (A) 100% H2O with no Mn2+, (B) 100% H2O/0.6 mM Mn2+, (C) 99% D2O with no Mn2+, (D) 99% D2O/0.6 mM Mn2+ and (E) 99% H218O with no Mn2+. The 13,960 (for each of the conditions A to D) and 33,504 (for condition E) base pairs were sequenced. A maximum error rate of 1.8 × 10−3 errors/bp was detected in condition D, without any particular hot-spot mutations. A high preference for AT → GC transitions was observed in condition D, whereas a high preference for transitions over transversions was observed in condition C. All of the mutations observed in condition E were transversions. When conditions A and C were applied to another template, the honeybee actin gene, the results were comparable to those for Ayu rhodopsin. Based on these results, the use of heavy water, instead of H2O, as a solvent for epPCR can introduce random mutations without positional bias, template dependency or decreased yield. Our new epPCR method, and possibly combining the use of D2O and H218O, may be a powerful random mutagenesis technique.  相似文献   

13.
Abstract

(Pro-Pro-Gly)10 [(PPG10)], a collagen-like polypeptide, forms a triple-helical, polyproline-II structure in aqueous solution at temperatures somewhat lower than physiological, with a melting temperature of 24.5°C. In this article, we present circular dichroism spectra that demonstrate an increase of the melting temperature with the addition of increasing amounts of D2O to an H2O solution of (PPG)10, with the melting temperature reaching 40°C in pure D2O. A thermodynamic analysis of the data demonstrates that this result is due to an increasing enthalphy of unfolding in D2O vs. H2O. To provide a theoretical explanation for this result, we have used a model for hydration of (PPG)10 that we developed previously, in which inter-chain water bridges are formed between sterically crowded waters and peptide bond carbonyls. Energy minimizations were performed upon this model using hydrogen bond parameters for water, and altered hydrogen bond parameters that reproduced the differences in carbonyl oxygen-water oxygen distances found in small-molecule crystal structures containing oxygen-oxygen hydrogen bonds between organic molecules and H2O or D2O. It was found that using hydrogen bond parameters that reproduced the distance typical of hydrogen bonds to D2O resulted in a significant lowering of the potential energy of hydrated (PPG)10. This lowering of the energy involved energetic terms that were only indirectly related to the altered hydrogen bond parameters, and were therefore not artifactual; the intra-(PPG10) energy, plus the water-(PPG10) van der Waals energy (not including hydrogen bond interactions), were lowered enough to qualitatively account for the lower enthalpy of the triple-helical conformation, relative to the unfolded state, in D2O vs. H2O. This result indicates that the geometry of the carbonyl-D2O hydrogen bonds allows formation of good hydrogen bonds without making as much of an energetic sacrifice from other factors as in the case of hydration by H2O.  相似文献   

14.
We have used the desiccation-tolerant lichen Flavoparmelia caperata, containing the green algal photobiont Trebouxia gelatinosa, to examine H/D isotope effects in Photosystem II in vivo. Artifact-free H/D isotope effects on both PSII primary charge separation and water oxidation yields were determined as a function of flash rate from chlorophyll-a variable fluorescence yields. Intact lichens could be reversibly dehydrated/re-hydrated with H2O/D2O repeatedly without loss of O2 evolution, unlike all isolated PSII preparations. Above a threshold flash rate, PSII charge separation decreases sharply in both D2O and H2O, reflecting loss of excitation migration and capture by PSII. Changes in H/D coordinates further slow charge separation in D2O (?23% at 120?Hz), attributed to reoxidation of the primary acceptor QA?. At intermediate flash rates (5–50?Hz) D2O decreases water oxidation efficiency (O2 evolution) by ?2–5%. No significant isotopic difference is observed at slow flash rates (<5?Hz) where charge recombination dominates. Slower D2O diffusion, changes in hydrogen bonding networks, and shifts in the pKa's of ionizable residues may all contribute to these systematic variations of H/D isotope effects. Lichens' reversible desiccation tolerance allows highly reproducible H/D exchange kinetics in PSII reactions to be studied in vivo for the first time.  相似文献   

15.
Proton and phosphorus-31 nuclear spin–lattice relaxation times T1 and spin–spin relaxation times T2 have been measured on the single-stranded polyriboadenylic acid [poly(A)]–Mn2+ system in a neutral D2O solution in the temperature range 10°–90°C at 100 and 40.5 MHz, respectively, with the Fourier transform nmr method. Minimum values of T1 have been found for all these nuclei, which have enabled the exact estimation of apparent distances from Mn2+ to H2, H8, H1′, and the phosphorus nucleus to be 4.7, 4.1, 5.2, and 3.0 Å, respectively. The electron spin of Mn2+ penetrates into the phosphorus nucleus, giving 31P hyperfine coupling of more than 106 Hz. Evidence of penetration of the electron spin into H8 and H2 is also obtained, suggesting direct coordination of nitrogen atoms of the adenine ring to the Mn2+ Ion. Combined with the result from proton relaxation enhancement of water, it is concluded that every Mn2+ ion added is bound directly to two phosphate groups with a Mn2+–phosphorus distance of 3.3 Å, while a part of the Mn2+ ions are simultaneouly bound to the adenine ring. It is estimated that 39 ± 13% and 13 ± 5% of Mn2+ are coordinated by N7 and N3 (or N1), respectively. The motional freedom of poly(A) in the environment of the Mn2+ binding site has been found to be quenched to the extent that the rotational motion becomes several times slower than that of the corresponding Mn2+–free poly(A). The activation energies for the molecular motion are, however, practically unchanged from those for Mn2+–free poly(A), and are found to be 8.3, 8.5, 6.1, and 8.7 kcal/mol for H8, H2, H1′, and phosphorus, respectively. T2 of phosphorus is determined by the dissociation rate (k?1) of Mn2+ from the phosphate group for the whole temperature range studied with activation enthalpy of 6.5 kcal/mol. The dissociation rates of Mn2+ from the adenine ring are also estimated from proton T2 values below 50°C.  相似文献   

16.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   

17.
The voltage-activated H+ selective conductance of rat alveolar epithelial cells was studied using whole-cell and excised-patch voltage-clamp techniques. The effects of substituting deuterium oxide, D2O, for water, H2O, on both the conductance and the pH dependence of gating were explored. D+ was able to permeate proton channels, but with a conductance only about 50% that of H+. The conductance in D2O was reduced more than could be accounted for by bulk solvent isotope effects (i.e., the lower mobility of D+ than H+), suggesting that D+ interacts specifically with the channel during permeation. Evidently the H+ or D+ current is not diffusion limited, and the H+ channel does not behave like a water-filled pore. This result indirectly strengthens the hypothesis that H+ (or D+) and not OH is the ionic species carrying current. The voltage dependence of H+ channel gating characteristically is sensitive to pHo and pHi and was regulated by pDo and pDi in an analogous manner, shifting 40 mV/U change in the pD gradient. The time constant of H+ current activation was about three times slower (τact was larger) in D2O than in H2O. The size of the isotope effect is consistent with deuterium isotope effects for proton abstraction reactions, suggesting that H+ channel activation requires deprotonation of the channel. In contrast, deactivation (τtail) was slowed only by a factor ≤1.5 in D2O. The results are interpreted within the context of a model for the regulation of H+ channel gating by mutually exclusive protonation at internal and external sites (Cherny, V.V., V.S. Markin, and T.E. DeCoursey. 1995. J. Gen. Physiol. 105:861–896). Most of the kinetic effects of D2O can be explained if the pK a of the external regulatory site is ∼0.5 pH U higher in D2O.  相似文献   

18.
Solvent isotope effects on microtubule polymerization and depolymerization   总被引:2,自引:0,他引:2  
The initial velocity of polymerization of purified beef brain tubulin has been determined at various values of pH or pD in water and in H2O-D2O mixtures. D2O was shown to inhibit both polymerization at 37 °C and depolymerization measured at 5 °C and 37 °C. The microtubules formed in D2O were indistinguishable from those formed in H2O, by electron microscope examination. In 93% D2O the pL2versus rate of polymerization curve was displaced about one unit towards higher pL values. In certain regions of the pL versus rate curve, a stimulation in the rate of polymerization by D2O is observed. The extent of polymerization at the optimum pL value was not affected by D2O.  相似文献   

19.
In the initial stage of the crystallization of egg-white lysozyme, monomeric lysozyme aggregated rapidly to form a nucleus in the presence of high salt concentrations. In the present studies, we examined the initial aggregation process of lysozyme (initial crystallization process of lysozyme) in D2O/H2O with sodium ions or potassium ions, and investigated the relationship between the surface hydrophobicity and the aggregation rate of lysozyme. The effect of sodium ions or potassium ions on the initial aggregation process of lysozyme in D2O was clearly different from H2O. The initial aggregation rate of lysozyme in H2O was slower than in D2O. In the case of H2O, the initial aggregation rate was about the same in both ions. But in the case of D2O, the initial aggregation rate was affected by the ion species and the value was lower in potassium ions than in sodium ions. These results suggest that the interaction between lysozyme molecules is stronger in D2O than in H2O. Furthermore, sodium ions have a stronger effect on the interaction than potassium ions in the case of D2O. There was a good correlation among the initial aggregation rate, surface hydrophobicity, and ζ-potential of lysozyme. The hydrophobic interaction may be an important active force in the initial aggregation process of lysozyme.  相似文献   

20.
Effects of D2O were studied on internodal cells of the freshwater alga Nitellopsis obtusa under plasmalemma perfusion (tonoplast-free cells) with voltage clamp, and on Ca2+ channels isolated from the alga and reconstituted in bilayer lipid membranes (BLM). External application of artificial pond water (APW) with D2O as the solvent to the perfused plasmalemma preparation led to an abrupt drop of membrane resistance (R m = 0.12 ±0.03 kΩ · cm2), thus preventing further voltage clamping. APW with 25% D2O caused a two-step reduction of R m : first, down to 2.0 ± 0.8 kΩ · cm2, and then further to 200 Ω · cm2, in 2 min. It was shown that in the first stage, Ca2+ channels are activated, and then, Ca2+ ions entering through them activate the Cl? channels. The Ca2+ channels are activated irreversibly. If 100 mm CsCl was substituted for 200 mm sucrose (introduced for isoosmoticity), no effect of D2O on R m was observed. Intracellular H2O/D2O substitution also did not change R m . In experiments on single Ca2+ channels in BLM H2O/ D2O substitution in a solution containing 100 mm KCl (trans side) produced no effect on channel activity, while in 10 mm KCl, at negative voltage, the open channel probability sharply increased. This effect was irreversible. The single channel conductance was not altered after the H2O/D2O substitution. The discussion of the possible mechanism of D2O action on Ca2+ and Cl? channels was based on an osmotic-like stress effect and the phenomenon of higher D-bond energy compared to the H-bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号