首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorbitol-1-phosphate and sorbitol-6-phosphate were isolated from Prunus armeniaca leaves that had been labelled with 14C by photosynthesis in 14CO2. Each hexitol phosphate was present at ca 7 μmol/kg fr. wt in the tissue and formed ca 4% of the hexose monophosphate fraction. 14C-specific activity measurements suggest that each hexitol monophosphate is formed from a hexose monophosphate, and that one or other could be an intermediate in photosynthesis of sorbitol from CO2.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Trehalose 6-phosphate   总被引:1,自引:0,他引:1  
Trehalose 6-phosphate (T6P) is a sugar signal of emerging significance. It is an essential component of the mechanisms that coordinate metabolism with plant growth adaptation and development. Its significance began to dawn when genetic modification of the trehalose pathway produced dramatic phenotypes, before the genetic proliferation of the trehalose pathway in plants was fully realised. T6P regulates sugar utilization and starch metabolism and interacts with other signalling pathways, including those mediated by plant hormones. Trehalose phosphate synthases (TPSs) and trehalose phosphate phosphatases are regulated at the gene level by sugars, nitrate, cytokinin and abscisic acid. TPSs are also regulated post-translationally. Mechanistic details of how T6P signals are emerging, but still sparse. Nevertheless, even at this stage, targeting central regulators such as T6P offers promise in crop improvement.  相似文献   

10.
d-Ribose-5-phophate ketol-isomerase (EC 5.3.1,6), d-ribuIose-5-phosphate 3-epimerase (EC 5.1.3.1) and d-sedoheptulose-7-phosphate: d-gIyceraldehyde-3-phosphate glycolaldehyde-transferase (EC 2.2.1,1) have been partially purified. d-Ribose-5-phosphate ketol-isomerase was purified from spinach by column chromatography with DEAE-cellulose and DEAE-Sephadex A-50; d-ribulose-5-phosphate 3-epimerase was purified from baker’s yeast by column chromatography with DEAE-cellulose; and d-sedoheptulose-7-phosphate: d-glyceraldehyde-3-phosphate glycolaldehydetransferase was purified from a Bacillus species No. 102 mutant G3–46–22–6 by column chromatography with DEAE-cellulose. The preparations were used for the determination of the activities of these enzymes in the parent and d-ribose-forming mutants of a Bacillus species.  相似文献   

11.
12.
Beta-structure in glyceraldehyde-3-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

13.
Summary Erythrocyte G6PD from 1157 nondeficient Thai males was studied electrophoretically. The enzyme from four subjects showed abnormal mobility. Characterization of the enzyme revealed three new variants: G6PDs Ayutthaya (n=2), S-Sakorn, and Chao Phya.  相似文献   

14.
15.
We examined the formation of sphingolipid mediators in platelets, which abundantly store, and release extracellularly, sphingosine 1-phosphate (Sph-1-P). Challenging [(3)H]Sph-labeled platelet suspensions with thrombin or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a decrease in Sph-1-P formation and an increase in sphingosine (Sph), ceramide (Cer), and sphingomyelin formation. Sph conversion into Cer, and Cer conversion into sphingomyelin were not affected upon activation, suggesting that Sph-1-P dephosphorylation may initiate the formation of sphingolipid signaling molecules. In fact, Sph-1-P phosphatase (but not lyase) activity was detected in platelets, but this activity was not enhanced by thrombin or TPA. When quantified with [(3)H]acetic anhydride acetylation, followed by HPLC separation, the amounts of Sph-1-P and Sph decreased and increased, respectively, upon stimulation with thrombin or TPA, and these changes were attenuated by staurosporine. Under these TPA treatment conditions, over half of the [(3)H]Sph-1-P (formed in platelets incubated with [(3)H]Sph) was detected extracellularly, possibly due to its release from platelets, which was completely inhibited by staurosporine pretreatment. Furthermore, when TPA-induced Sph-1-P release was blocked by staurosporine after the stimulation, the extracellular [(3)H]Sph-1-P radioactivity decreased, suggesting that the Sph-1-P released may undergo dephosphorylation extracellularly. To support this, [(32)P]Sph-1-P, when added extracellularly to platelet suspensions, was rapidly degraded, possibly due to the ecto-phosphatase activity. Our results suggest the presence in anucleate platelets of a transmembrane cycling pathway starting with Sph-1-P dephosphorylation and leading to the formation of other sphingolipid mediators.  相似文献   

16.
Fructose 6-phosphate metabolism in plants   总被引:6,自引:0,他引:6  
The kinetic and regulatory properties of the ATP-dependent phosphofructokinase from various plant tissues are reviewed. Particular attention is given to the differences in properties between the plastid and cytosolic isozymes of this enzyme. A model for fructose 6-phosphate utilization in plants is presented which incorporates a role for the pyrophosphate-dependent phosphofructokinase.  相似文献   

17.
The electrophoretic difference between normal glucose-6-phosphate dehydrogenase (G6PD) and two common variants (G6PD A and G6PD A-) has made the G6PD enzyme system very useful for genetic studies and for investigation on the clonal origin of tumors. This approach has not been possible for another common variant, G6PD mediterranean, which has a normal electrophoretic pattern. The different utilization of 2-deoxy-glucose-6-phosphate (2dG6P), an analog of the normal substrate, by the normal enzyme and the Mediterranean variant, allows a convenient determination of the degree of mosaicism in mononuclear cells from heterozygotes.  相似文献   

18.
sn-Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA). LPA is an important intermediate for the formation of different types of acyl-lipids, such as extracellular lipid polyesters, storage and membrane lipids. Three types of GPAT have been found in plants, localizing to the plastid, endoplasmic reticulum, and mitochondria. These GPATs are involved in several lipid biosynthetic pathways and play important biological roles in plant development. In the present review, we will focus on the recent progress in studying the physiological functions of GPATs and their metabolic roles in glycerolipid biosynthesis.  相似文献   

19.
There is an increasing body of evidence demonstrating a critical role for the bioactive lipid S1P (sphingosine 1-phosphate) in cancer. S1P is synthesized and metabolized by a number of enzymes, including sphingosine kinase, S1P lyase and S1P phosphatases. S1P binds to cell-surface G-protein-coupled receptors (S1P1-S1P5) to elicit cell responses and can also regulate, by direct binding, a number of intracellular targets such as HDAC (histone deacetylase) 1/2 to induce epigenetic regulation. S1P is involved in cancer progression including cell transformation/oncogenesis, cell survival/apoptosis, cell migration/metastasis and tumour microenvironment neovascularization. In the present paper, we describe our research findings regarding the correlation of sphingosine kinase 1 and S1P receptor expression in tumours with clinical outcome and we define some of the molecular mechanisms underlying the involvement of sphingosine kinase 1 and S1P receptors in the formation of a cancer cell migratory phenotype. The role of sphingosine kinase 1 in the acquisition of chemotherapeutic resistance and the interaction of S1P receptors with oncogenes such as HER2 is also reviewed. We also discuss novel aspects of the use of small-molecule inhibitors of sphingosine kinase 1 in terms of allosterism, ubiquitin-proteasomal degradation of sphingosine kinase 1 and anticancer activity. Finally, we describe how S1P receptor-modulating agents abrogate S1P receptor-receptor tyrosine kinase interactions, with potential to inhibit growth-factor-dependent cancer progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号