首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Auxin activity of 3-methyleneoxindole in wheat   总被引:4,自引:3,他引:1       下载免费PDF全文
Basu PS  Tuli V 《Plant physiology》1972,50(4):499-502
A product of the enzymatic oxidation of indole-3-acetic acid, 3-methyleneoxindole, is at least 50-fold more effective than indole-3-acetic acid in stimulating the growth of wheat (Triticum vulgare, red variety) coleoptiles. Ethylenediaminetetra-acetic acid can antagonize the growth-stimulating properties of the parent compound, indole-3-acetic acid, presumably by chelating Mn2+, which is required for the enzymatic oxidation of indole-3-acetic acid. The growth stimulating effect of 3-methyleneoxindole, a product of the blocked reaction, on the other hand, is still evident in the presence of ethylenedia-minetetraacetic acid. In the presence of 2-mercaptoethanol, indole-3-acetic acid fails to stimulate the elongation of wheat coleoptiles. The property of binding to sulfhydryl compounds including 2-mercaptoethanol is unique to 3-methyleneoxindole among indole-3-acetic acid and its oxidation products. These findings suggest that 3-methyleneoxindole is an obligatory intermediate in indole-3-acetic acid induced elongation of wheat coleoptiles.  相似文献   

2.
Tuli V  Moyed HS 《Plant physiology》1967,42(3):425-430
Extracts of pea seedlings (Pisum sativum, variety Alaska) oxidize indole-3-acetic acid to a bacteriostatic compound which has been identified as 3-hydroxymethyloxindole. At physiological pH this compound is readily dehydrated to 3-methyleneoxindole, another bacteriostatic agent. The extracts of pea seedlings also contain a reduced triphosphopyridine nucleotide-linked enzyme which reduces 3-methyleneoxindole to 3-methyloxindole, a non-toxic compound.

These enzymatic reactions also take place in intact seedlings; thus, a pathway of indole-3-acetic acid degradation via oxindoles appears to be pertinent to plant metabolism.

The significance of such metabolism lies in the fact that a key intermediate of this pathway, 3-methyleneoxindole, is a sulfhydryl reagent capable of profound effects on metabolism and growth.

  相似文献   

3.
Formation of indole-3-acetic acid-aspartate in detached primary leaves of cowpea (Vigna sinensis Endl.) floating on (14)C-indole-3-acetic acid (3 muc; 3.15 mum, phosphate-citrate buffer, pH 4.75), almost doubled when leaves were pretreated with 31.5 mum(12)C-indole-3-acetic acid for 17 hr and then transferred to (14)C-indole-3-acetic acid for 4 hours as compared with leaves preincubated in buffer only. When leaves were preincubated with ethylene (11.0 and 104 mul/l) instead of (12)C-indole-3-acetic acid, no induction of indole-3-acetylaspartic acid formation was observed, and the rate of indole-3-acetylaspartic acid formation decreased as compared with control leaves. Rhizobitoxine (1.87 mum) inhibited indole-3-acetic acid-induced ethylene production but did not prevent the formation of indole-3-acetylaspartic acid. In view of the similarity of these results and those previously obtained with alpha-naphthaleneacetic acid, it is concluded that ethylene has no role in the auxin-induced indole-3-acetylaspartic acid formation in cowpea leaves.  相似文献   

4.
Abstract The catabolism of indole-3-acetic acid was investigated in chloroplast preparations and a crude enzyme fraction derived from chloroplasts of Pisum sativum seedlings. Data obtained with both systems indicate that indole-3-acetic acid undergoes decarboxylative oxidation in pea chloroplast preparations. An enhanced rate of decarboxylation of [1′-1C]indole-3-acetic acid was obtained when chloroplast preparations were incubated in the light rather than in darkness. Results from control experiments discounted the possibility of this being due to light-induced breakdown of indole-3-acetic acid. High performance liquid chromatography analysis of [2′-14C]indole-3-acetic acid-fed incubates showed that indole-3-methanol was the major catabolite in both the chloroplast and the crude enzyme preparations. The identification of this reaction product was confirmed by gas chromatography-mass spectrometry when [2H5]indole-3-methanol was detected in a purified extract derived from the incubation of an enzyme preparation with 32H5]indole-3-acetic acid.  相似文献   

5.
Evans ML  Ray PM 《Plant physiology》1973,52(2):186-189
The recently reported growth-promoting ability of 3-methyl-eneoxindole was examined in order to test the hypothesis that indole-3-acetic acid acts as a growth promoter only after oxidative conversion to 3-methyleneoxindole. Methyleneoxindole was synthesized from indole-3-acetic acid and N-bromosuccinimide, and its identity was confirmed by ultraviolet absorption, infrared absorption, mass spectrometry, and melting point. Methyleneoxindole was found to lack growth-promoting activity in coleoptile and pea (Pisum sativum) stem segments. Chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid, was found to have no inhibitory effect on growth promotion by indole-3-acetic acid. It is concluded that 3-methyleneoxindole is inactive as a growth promoter and therefore does not mediate the action of auxin on cell elongation.  相似文献   

6.
Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.  相似文献   

7.
Four-day-old stem segments of Zea mays L. cv. Seneca 60 were treated sequentially with phenolic substances and indole-3-acetic [2-14C] acid ([2-14C]IAA). Formation of bound IAA was rapid, but a pretreatment with p-coumaric acid, ferulic acid or 4-methylumbelliferone decreased the level of bound IAA. The decrease is not likely related to the effect of the phenolics on enzymic oxidation of IAA, since the level of free IAA was not limiting and the activity of ferulic acid in enzymic oxidation of IAA is different from that of p-coumaric acid and 4-methylum-belliferone. Apparently these compounds inhibited the formation of bound IAA and consequently caused an accumulation of free IAA. In contrast, caffeic acid, protocatechuic acid and 2,3-dihydro-2, 2-dimethyl-7-benzofuranol had little effect. After the uptake of IAA there was a slow but steady incorporation of the radioactivity into the 80% ethanol-insoluble, 1 M NaOH-soluble fraction. Phenolic substances also affected this process. The compounds which are cofactors of IAA-oxidase increased the incorporation while those which are inhibitors of IAA-oxidase decreased the incorporation. Results suggest that the phenolics also affected the enzymic oxidation of IAA in vivo in the same way as in vitro.  相似文献   

8.
Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumptions concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C] galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.  相似文献   

9.
A mixture of [2-14C1] and [13C6]indole-3-acetic acid was applied to the cotyledons of 6-day-germinated seeds of “jacarandá do cerrado” (Dalbergia dolichopetala) and after 8 hours the seeds were extracted. Analysis of the fractionated extract by reversed-phase high performance liquid chromatography-radiocounting revealed the presence of five radiolabeled metabolite peaks (I-V). After further purification, the individual peaks of radioactivity were analyzed by combined high performance liquid chromatography-steel filter-fast atom bombardment-mass spectrometry. The metabolite fraction V was found to contain [14C1, 13C6]indole-3-acetylas-partic acid and unlabeled indole-3-acetylglutamic acid. Analysis of the metabolite fraction II revealed the presence of dioxindole-3-acetylaspartic acid and putative dioxindole-3-acetylglutamic acid as well as putative benzene ring-hydroxylated derivatives of oxindole-3-acetylaspartic acid and oxindole-3-acetylglutamic acid. There was no evidence of significant incorporation of label from [2′-14C1] or [13C6]indole-3-acetic acid into any of these conjugated indoles.  相似文献   

10.
3-Methyleneoxindole Reductase of Peas   总被引:3,自引:2,他引:1       下载免费PDF全文
A 100-fold purification of a reduced triphosphopyridine nucleotide/3-methyleneoxindole reductase of peas has been achieved using conventional protein fractionation procedures. Reduced diphosphopyridine nucleotide is 25-fold less effective than reduced triphosphopyridine nucleotide as the reductant. The preparation is free of other reductase activities including those linking the oxidation of reduced pyridine nucleotide coenzymes to the reduction of cytochrome c; vitamins K(1), K(2), and K(3); O(2); nitrate; oxidized glutathione; and thiazolyl blue tetrazolium. The affinity of the enzyme for 3-methyleneoxindole (K(s) = 0.5 mm 3-methyleneoxindole) is relatively high. It is, therefore, reasonable to assume that 3-methyleneoxindole is the normal substrate.The enzyme is inhibited by indole-3-acetic acid, indole-3-aldehyde, and by l-naph-thaleneacetic acid. While these are not especially powerful inhibitors (K(1) = 1.9-4.0 mm) the competitive relationship with 3-methyleneoxindole indicates that significant inhibition might occur at low intracellular concentrations of the substrate.  相似文献   

11.
Developing lime fruit [Citrus aurantifolia (Christm.) Swingle] was supplied with dl-tryptophan-3-14C in a special medium. An incubation period of six hours was sufficient for the radioactivity to reach an equilibrium between the fruit tissue and the incubation medium. Analyses of the fruit tissue and the medium for acidic and neutral metabolites of tryptophan indicated the existence of indolic products. The auxin indole-3-acetic acid (IAA) was identified among the products by dry column chromatography and biological assay. Other acidic metabolites included indolepyruvic acid and an unidentified material. Neutral metabolites included indolealdehyde, indoleacetaldehyde, and two unidentified compounds. Biological activity in the Avena curvature test was obtained from extracted compounds which corresponded to IAA and indolepyruvic acid in the acidic fraction and indoleacetaldehyde in the neutral fraction. Radioactive tryptophan was also found in both the acidic and the neutral fractions due to its amphoteric nature. The experiment demonstrated the conversion of tryptophan to its indolic metabolites, including indole-3-acetic acid, in this Citrus tissue.  相似文献   

12.
Nonhcbcl, H. M. 1986. Measurement of the rates of oxindole-3-aceticacid turnover and indole-3-acetic acid oxidation in Zea maysseedlings.—J. exp. Bat. 37: 1691–1697. Oxindole-3-acetic acid is the pnncipal catabolite of indole-3-aceticacid in Zea mays seedlings. In this paper measurements of theturnover of oxindole-3-acetic acid are presented and used tocalculate the rate of indole-3-acetic acid oxidation. [3H]Oxindolc-3-acetic acid was applied to the endosperm of Zeamays seedlings and allowed to equilibrate for 24 h before thestart of the experiment. The subsequent decrease in its specificactivity was used to calculate the turnover rate. The averagehalf-life of oxindole-3-acetic acid in the shoots was foundto be 30 h while that in the kernels had an average half-lifeof 35 h. Using previously published values of the pool sizesof oxindole-3-acetic acid in shoots and kernels from seedlingsof the same age and variety, and grown under the same conditions,the rate of indole-3-acetic acid oxidation was calculated tobe I-I pmol plant–1 h–1 in the shoots and 7·1pmol plant–1 h–1 in the kernels. Key words: Oxindole-3-acetic acid, indole-3-acetic acid, turnover, Zea mays  相似文献   

13.
The suggestion that indole-3-acetic acid (IAA)-stimulated ethylene production is associated with oxidative degradation of IAA and is mediated by 3-methyleneoxindole (MOI) has been tested in mung bean (Phaseolus aureus Roxb.) hypocotyl segments. While IAA actively stimulated ethylene production, MOI and indole-3-aldehyde, the major products of IAA oxidation, were inactive. Tissues treated with a mixture of intermediates of IAA oxidation, obtained from a 1-hour incubation of IAA with peroxidase, failed to stimulate ethylene production. Furthermore, chlorogenic acid and p-coumaric acid, which are known to interfere with the enzymic oxidation of IAA to MOI, had no effect on IAA-stimulated ethylene production. Other oxidation products of IAA, including oxindole-3-acetic acid, indole-3-carboxylic acid, (2-sulfoindole)-3-acetic acid, and dioxindole-3-acetic acid, were all inactive. 1-Naphthaleneacetic acid was as active as IAA in stimulating ethylene production but was decarboxylated at a much lower rate than IAA, suggesting that oxidative decarboxylation of auxins is not linked to ethylene production. These results demonstrate that IAA-stimulated ethylene production in mung bean hypocotyl tissue is not mediated by MOI or other associated oxidative products of IAA.  相似文献   

14.
Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-d-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.  相似文献   

15.
We have identified [1-14C]-oxindole-3-acetic acid as a catabolic product of [1-14C]-indole-3-acetic acid metabolism in Zea mays seedlings. The isolation, and chemical and mass spectral characterization of oxindole-3-acetic acid from corn kernel tissue is described together with data suggesting oxindole-3-acetic acid to be a major catabolic product of indole-3-acetic acid.  相似文献   

16.
Tsurumi S  Wada S 《Plant physiology》1985,79(3):667-671
A new indole-3-acetic acid metabolite was isolated from broad bean (Vicia faba L. cv Chukyo) seedlings. It was a conjugate of dioxindole-3-acetic acid, aspartic acid, and glucose and was identified as 3-(O-β-glucosyl)-2-indolone-3-acetylaspartic acid (molecular weight 484) from ultraviolet, infrared, nuclear magnetic resonance, and mass spectra. Its natural content in 4-day-old Vicia seedlings was estimated to be 8.6 nanomoles per gram fresh weight. It was suggested that oxidation of indole-3-acetic acid not accompanied by decarboxylation might regulate endogenous level of the hormone.  相似文献   

17.
Pea (Pisum sativum var. Alaska) and bean (Phaseolus vulgaris var. Red Kidney) stem sections treated with indoleacetic acid-1-14C, indoleacetic acid-2-14C, and indoleacetic acid-5-3H were homogenized, extracted with phenol, and the water-soluble, ethanol-insoluble material subjected to further fractionation. Following an 18-hour incubation period in indoleacetic acid-1-14C, most of the label was found as nonindole-14C in high molecular weight polysaccharide, as phenol extraction is specific for both RNA and polysaccharides. With indoleacetic acid-2-14C and -5-3H, and to a lesser extent with indoleacetic acid-1-14C, radioactive indoles were obtained by hydrolysis from a heterogeneous fraction between about 500 and 30,000 molecular weight, possibly polysaccharide in nature. Indoleacetic acid accounted for 8% and indole aldehyde accounted for 21% of the total radioactivity in the extract.  相似文献   

18.
The nature of the products of the auxin catabolism mediated by both basic and acidic isoperoxidases has been studied. While indole-3-methanol is only a minor product of the oxidation of indole-3-acetic acid catalyzed by extracellular acidic isoperoxidases, it is the only product of the oxidation of indole-3-acetic acid catalyzed by two cytosolic basic isoperoxidases (EC 1.11.1.7) from lupin (Lupinus albus L.) hypocotyls. The putative indole-3-methanol formed by these latter isoperoxidases was isolated and then characterized by mass spectrometry and 1H-nuclear magnetic resonance spectrometry. These results are discussed with respect to the diversity and compartmentation of the catabolism of indole-3-acetic acid in plant tissues.Abbreviations DCP 2,4-dichlorophenol - IAA indole-3-acetic acid - IM indole-3-methanol  相似文献   

19.
Gas chromatography-mass spectrometric analyses of purified extracts from cultures of Rhizobium phaseoli wild-type strain 8002, grown in a non-tryptophan-supplemented liquid medium, demonstrated the presence of indole-3-acetic acid (IAA), indole-3-ethanol (IEt), indole-3-aldehyde and indole-3-methanol (IM). In metabolism studies with 3H-, 14C- and 2H-labelled substrates the bacterium was shown to convert tryptophan to IEt, IAA and IM; IEt to IAA and IM; and IAA to IM. Indole-3-acetamide (IAAm) could not be detected as either an endogenous constituent or a metabolite of [3H]tryptophan nor did cultures convert [14C]IAAm to IAA. Biosynthesis of IAA in R. phaseoli, thus, involves a different pathway from that operating in Pseudomonas savastanio and Agrobacterium tumefaciens-induced crown-gall tumours.Abbreviations IAA indole-3-acetic acid - IAld indole-3-aldehyde - IAAm indole-3-acetamide - IEt indole-3-ethanol - IM indole-3-methanol - HPLC-RC high-performance liquid chromatography-radio counting - GC-MS gas chromatography-mass spectrometry  相似文献   

20.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号