首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Oral filament proteins and their regulation in Tetrahymena pyriformis   总被引:2,自引:0,他引:2  
Two proteins from the Triton X-100-insoluble fraction of Tetrahymena pyriformis have been isolated and shown by immunological methods to be major components of a pervasive system of filaments localized within the oral apparatus. These proteins, OF-1 and OF-2, have apparent molecular weights (MWapp) in polyacrylamide gels of 87,000 and 80,000 D, respectively. Peptide maps obtained and the absence of immunological cross-reactivity suggest that these proteins are not closely related to each other. Indirect immunofluorescence studies on dividing cells have shown that the oral filament system forms late in the cell cycle. The filaments appeared first after the basal bodies in the oral primordium had organized into groups and the fission furrow had begun to form. Dedifferentiation of the oral filament system in the anterior (old) oral apparatus was also observed at this point in the cell cycle. Following this, the oral filament systems in both old and new oral apparatuses completed development synchronously. Proteins showing antigenic similarity to OF-1 were found in a number of other cell types. Tests with heterologous antisera failed to demonstrate a relationship between vertebrate cytoskeletal proteins and the oral filament proteins of Tetrahymena.  相似文献   

2.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies - the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure. The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   

3.
We have employed monoclonal antibodies to reinvestigate the janus mutants of the ciliate Tetrahymena thermophila, which cause reversal of circumferential polarity on the dorsal surface of the cell. This reversal brings about frequent ectopic expression of ventral cortical landmarks, such as a "secondary" oral apparatus, on the dorsal surface. The principal antibody employed, FXXXIX-12G9, immunolabels both transient cortical structures not directly associated with basal bodies (the fission line and the postoral meridional filament) and more permanent structures (apical band and oral crescent) that are associated with basal bodies. 12G9-immunolabeling of janus cells has revealed additional phenotypes, including disorder of ciliary rows. Further, this labeling has shown that the postoral meridional filament is often expressed and the apical band is frequently interrupted on the mid-dorsal surface of janus cells irrespective of whether or not these cells express a "secondary" oral apparatus. Of the permanent structures revealed by 12G9 immunofluorescence, modifications of the oral crescent (OC) are associated with prior modifications in the development of basal body-containing structures in the secondary oral apparatus. The formation of the apical band (AB) is also commonly abnormal in janus cells; analysis of specific abnormalities shows that the AB depends both on its initiation at a specific site near the anterior basal body of apical basal body couplets and on the normal location of these couplets just posterior to the fission line. We also have uncovered an intriguing difference in the reactivity of apical-band filaments to the 12G9 antibody in the two non-allelic janus mutants (janA1 and janC2) that we have investigated. Taken together, our observations indicate that the formation of new cellular structures at division depends both upon pre-existing cytoskeletal structures and upon the positional information provided by large-scale cellular polarities.  相似文献   

4.
Differentiated regions within the membrane skeleton are described around basal bodies in the ciliary rows of Tetrahymena. These domains, approximately 1 micron in diameter, are characterized by a relatively dense ultrastructure, the presence of a family of proteins called K antigens (Mr 39-44 x 10(3)) that are recognized by mAb 424A8, and the apparent exclusion of major membrane skeleton proteins that are present in most other regions of the cell (Mr 135, 125 x 10(3]. Mature basal body domains are asymmetric, reflecting the polarity of the cell as a whole. A similar differentiation of the membrane skeleton occurs in the oral apparatus, except here the K antigens surround four clusters of basal bodies (from which this cell takes its name) rather than the individual basal bodies. The development of new basal body domains in the cell cycle is described, with similarities and differences noted between somatic and oral regions of the cell. It is concluded that the capacity of this cell for precise topographic regulation of molecular events in the membrane skeleton makes it a useful model for the study of cortical differentiation in cells generally.  相似文献   

5.
An ultrastructural investigation has been carried out on 180 degrees-rotated ciliary meridians (inverted meridians) in Tetrahymena pyriformis temperature-sensitive mutant (mo1b/mo1b), syngen 1, strain B. The longitudinal, transverse and post-ciliary microtubular bands, the kinetodesmal fiber, and the parasomal sac, are shown to be disposed at a 180 degrees angle to their normal positions or orientations. Other abnormalities are as follows: the first 2 basal bodies of the inverted meridian fail to organize into "couplets" and the inverted meridian intrudes into the anterior pole region; an extra longitudinal microtubular band is found in one of the cell lines.  相似文献   

6.
ABSTRACT. Extraction of the ciliated protozoon Tetrahymena with nonionic detergents produces a surface-related cytoskeleton that consists of a basic lamina of whole-cell dimensions together with associated microtubule and microfilament systems, including all ciliary basal bodies. The organization of the isolated cytoskeleton has been studied using scanning electron microscopy, and several new features are described in the oral region. Here the ciliary basal bodies are arranged in a very stable and highly complex pattern. This pattern was found to be identical in the four species of Tetrahymena we examined. In addition, various microtubular bundles and two separate systems of filaments were observed in scanning electron micrographs of isolated oral skeletons. The appearance of the deep fiber bundle in preparations of this type suggests that it arises, at least in part, as an extension of the ribbed wall microtubules. On the basis of its distribution within the oral skeleton, one of the filament systems described is suggested to be a contractile system responsible for pinching off food vacuoles.  相似文献   

7.
The cell surface of Tetrahymena thermophila is made up of an anterior region in which virtually all basal bodies of ciliary rows are ciliated, and the remainder in which ciliated and unciliated basal bodies are fairly irregularly interspersed. This pattern persists through interfission development until the stage of appearance of the equatorial ring of gaps in the ciliary rows that marks the fission zone. The ciliation pattern then becomes subdivided, in large part through the rapid ciliation of contiguous basal bodies located posterior to the fission zone. We interpret this process as a wave of ciliation of preexisting basal bodies that propagates posteriorly from the site of the fission zone. The location, extent, and timing of the ciliation process are the same in inverted as in normally oriented ciliary rows, in spite of the fact that in inverted rows the visible fission zone gap is tardily formed and the local configuration of ciliature around this gap is abnormal. The putative ciliation wave thus does not depend directly upon the local manifestations of the fission zone. However, in a cell-division-arrest mutant, cdaA1, analyzed under conditions in which formation of fission-zone gaps is permanently prevented in some ciliary rows but not in all, it is found that the ciliation pattern becomes subdivided in those ciliary rows that express fission-zone gaps and fails to become subdivided in neighboring rows that fail to manifest gaps. We interpret this combination of findings to indicate that a signal localized at the cell equator initiates a set of polarized developmental events that simultaneously create and demarcate two cellular fields within what was previously one. We further suggest that the characteristic tandem cell division pattern of ciliates is fundamentally a process of segmentation, which might involve mechanisms of gradient subdivision analogous to those taking place during segmentation of insects and other multicellular organisms.  相似文献   

8.
Microtubular basal bodies and epiplasm (membrane skeleton) are the main components of the cortical skeleton of Tetrahymena. The aim of this report was to study functional interactions of basal bodies and epiplasm during the cell cycle. The cortex of Tetrahymena cells was stained with anti-epiplasm antibody. This staining produced a bright epiplasmic layer with a dark pattern of unstained microtubular structures. The fluorescence of the anti-epiplasm antibody disappeared at sites of newly formed microtubular structures, so the new basal body domains and epiplasmic layer could be followed throughout the cell cycle. Different patterns of deployment of new basal bodies were observed in early and advanced dividers. In advanced dividers the fluorescence of the epiplasmic layer diminished locally within the forming fission line where the polymerization of new basal bodies largely extincted. In wild type Tetrahymena, the completion of the micronuclear metaphase/anaphase transition was associated with a transition from the pattern of new basal body deployment and epiplasm staining of the early divider to the pattern of the advanced dividers. The signal for the fission line formation in Tetrahymena (absent in cdaA1 Tetrahymena mutationally arrested in cytokinesis) brings about 1) transition of patterns of deployment of basal bodies and epiplasmic layer on both sides of the fission line; and 2) coordination of cortical divisional morphogenesis with the micronuclear mitotic cycle.  相似文献   

9.
The coupled resorption and redifferentiation of oral structures which occurs in Tetrahymena pyriformis under conditions of amino acid deprivation has been studied by transmission electron microscopy. Two patterns of ciliary resorption have been found, (a) in situ, and (b) after withdrawal into the cytoplasm. No autophagic vacuoles containing cilia or ciliary axonemes have been seen. Stomatogenic field basal bodies arise by a process of rapid sequential nucleation, with new ones always appearing next to more mature ones, even though the latter may not be fully differentiated. Accessory radial ribbons of microtubules develop immediately adjacent to oral field basal bodies as a late step in their maturation. It can be seen that the formation of basal bodies and their orientation within the oral complex are separate processes. This is true for about 130 of the approximately 170 oral basal bodies; the remaining 40 or so form within the patterned groups of ciliary units as a later event. Clusters of randomly oriented thin-walled microtubules are found surrounding oral basal bodies at all times during stomatogenesis. They may either represent stores of microtubule subunit protein, or serve as effectors of basal body movement during their orientation into pattern.  相似文献   

10.
The ciliate Tetrahymena thermophila possesses a multitude of cytoskeletal structures whose differentiation is related to the basal bodies the main mediators of the cortical pattern. This investigation deals with immunolocalization using light and electron microscopy of filaments labeled by the monoclonal antibody 12G9, which in other ciliates identifies filaments involved in transmission of cellular polarities and marks cell meridians with the highest morphogenetic potential. In Tetrahymena interphase cells, mAb 12G9 localizes to the sites of basal bodies and to the striated ciliary rootlets, to the apical band of filaments and to the fine fibrillar oral crescent. We followed the sequence of development of these structures during divisional morphogenesis. The labeling of the maternal oral crescent disappears in pre-metaphase cells and reappears during anaphase, concomitantly with differentiation of the new structure in the posterior daughter cell. In the posterior daughter cell, the new apical band originates as small clusters of filaments located at the base of the anterior basal bodies of the apical basal body couplets during early anaphase. The differentiation of the band is completed in the final stages of cytokinesis and in the young post-dividing cell. The maternal band is reorganized earlier, simultaneously with the oral structure.The mAb 12G9 identifies two transient structures present only in dividing cells. One is a medial structure demarcating the two daughter cells during metaphase and anaphase, and defining the new anterior border of the posterior daughter cell. The other is a post-oral meridional filament marking the stomatogenic meridian in postmetaphase cells. Comparative analysis of immunolocalization of transient filaments labeled with mAb12G9 in Tetrahymena and other ciliates indicates that this antibody identifies a protein bound to filamentous structures, which might play a role in relying polarities of cortical domains and could be a part of a mechanism which governs the positioning of cortical organelles in ciliates.  相似文献   

11.
Summary The unique monoclonal antibody FXXXIX 12G9 obtained againstTetrahymena cortices was used to label cytoskeletal structures related to basal body proliferation inParaurostyla weissei. The antibody binds to an amorphous material interconnecting basal bodies in compound ciliary structures: dorsal units, cirri and membranelles in interfission cells, and filamentous structures supporting the primordia of ciliary structures and fission line in dividing cells. The antibody visualized meridional filaments preceding proliferation of new basal bodies in the oral primordium and structures accompanying all developing ciliary primordia. It congregated in differentiating new procirri and membranelles, whereas another population of transient meridional structures accompanied the final distribution of new structures. A meridional filament connecting transverse cirri with the oral apparatus, marking the future stomatogenic meridian, persisted in both division products until completion of cell elongation. The fission line was found to originate from an anterior extension of the pre-oral filament toward the parental oral structures. It then encircled the cell's midbody demarcating the boundary between daughter cells; two additional circumferential structures bordering the anterior and posterior ends of differentiating division products participate in formation of the new poles. They disappear after separation of daughter cells and completion of resorption of parental ciliature. In the enhanced multi-left-marginal mutant expressing gross hyperduplication of basal bodies, the location of the 12G9 antigen corresponded to that in wild-type cells. The sequence of formation of meridional filaments in the mutant was found to be altered. The filaments in the left lateral domain preceded the formation of the preoral filament, yet the temporal pattern of basal body assembly was not modified. The fission line, as in wild-type cells, originated in connection with the oral primordium. We conclude that the nucleation of the filamentous structures bearing the 12G9 antigen and the basal body assembly occur by independent mechanisms reading the same cell cycle signals. We suggest that the 12G9-antigen-bearing protein might be similar to septins: involved in signaling the position of the oral primordium and the fission line and functioning in establishing and maintaining the asymmetric cortical domain characteristics.Abbrevations AZM zone of adorai membranelles - bb basal bodies - CC caudal cirri - FC frontal cirri - Fmf frontal meridional filament - FTV the primordia of fronto-ventro-transverse cirri - LD, RD dorsal rows of bristle units - LM, RM left or right marginal cirral row - OA oral apparatus - OP primordium of the adoral membranelles - pLM, pRM primordium of the left or right marginal cirri - pLD, pRD primordia of the left or right dorsal bristle rows - pUM primordium of the undulating membranes - TC transverse cirri - UM undulating membranes - VC ventral cirral rows  相似文献   

12.
The misaligned undulating membrane (mum) mutant of Tetrahymena thermophila is a non-conditional, single gene recessive mutation. The major effect of the mum mutation is the production of multiple undulating membrane (UM) fragments in the oral apparatus (OA). The ultrastructure of the UM fragments of mum OAs is identical to that of the single UM of wild-type OAs. Analysis of OA development at midbody using a combination of light microscopy of protargol-stained cells and SEM of demembranated whole cells showed that the phenotypic effect of the mum mutation first becomes evident during mid to late stage 4 and is fully manifested in early stage 5. The effect of the mutation involves a proliferation of excess basal bodies in the UM field. Subsequent events in the development of the mum OA from mid to late stage 5 are identical to those in wild-type OAs. This study suggests that the mum mutation establishes conditions that allow the production of multiple UMs and thus reveals that the UM field is competent for the complete and coordinated development of several adjacent UMs. This level of regional control is not clearly evident when a single UM is present. The comparison of development of wild-type and mum OAs required an extensive reanalysis of stages 4 and 5 of normal oral development. On the basis of current and previous observations, we propose a new and more subdivided staging system for oral development in Tetrahymena.  相似文献   

13.
The pattern of proliferation of new basal bodies in ciliary rows (somatic proliferation) in Tetrahymena was observed. Starved and refed cells were used, because proliferation in these cells is more pronounced than that under other circumstances. The formation of new basal bodies is locally determined by the position of "old" pre-existing basal body (short range determination). However, the probability of proliferation associated with any given "old" basal body differs very much. This probability is determined by the spatial coordinates of the particular region of the cell (long range determination); however some randomness in this process was also observed. Two different gradients of proliferation were found. The first gradient is circumferential with a maximum number of new basal bodies added in ciliary rows n, 1, 2 and 3 and the minimum number added in ciliary rows 7, 8 and 9. The second is an antero-posterior gradient with the highest number of new basal bodies added in the midbody region. Moreover, at least in some cases, new oral primordia first appear, as a random proliferation of new basal bodies adjacent to a few old cilia of ciliary row No. 1, resembling somatic proliferation. Then 2,3 or even more clumps of basal bodies appear, each having one old cilium posteriorly. These clumps, however, are not linear groups within the ciliary row but instead they form small fields of basal bodies. These findings suggest, that the same two-gradient system for new basal body addition operates during somatic proliferation and also determines the position of the new oral primordium as the site of the highest gradient value at the intersection of two gradients.  相似文献   

14.
Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis.  相似文献   

15.
The gill ctenidium growth tip of the lamellibranch mollusc Aequipecten irradians recapitulates the temporal development of ciliated gill filaments and related structures in a spatial fashion. This “meristematic” relationship has allowed a study of basal body formation and ciliogenesis in adjacent cells of gill filament papillae at stages of progressively more advanced relative development. Basal bodies appear to originate quite rapidly, subsequent to the appearance of a complex of dense granules, quite reminiscent of the “condensation forms” or “procentriole precursors” typically seen in vertebrate ciliogenesis. Unlike basal body generation in higher forms, that in Aequipecten shows no obvious organized intermediate stages. During ciliation, randomly-oriented, nearly complete procentrioles are found concomitantly with actively-functioning basal bodies. Cilia formation in more advanced, already-ciliated cells is again preceded by the presence of granular complexes. Ciliogenesis in this mollusc thus shares with certain lower forms the property of very rapid basal body formation but, like many higher forms, it is preceded by the formation of a granular precursor complex, presumably consisting of particulate microtubule protein.  相似文献   

16.
This report is an ultrastructural analysis of the organization of the isolated oral apparatus of Tetrahymena pyriformis, strain WH-6, syngen 1. Attention has been focused on the organization of microtubules and filaments in oral apparatus membranelles. Oral apparatus membranellar basal bodies were characterized with respect to structural differentiations at the distal and proximal ends. The distal region of membranellar basal bodies contains the basal plate, accessory microtubules and filaments. The proximal end contains a dense material from which emanate accessory microtubules and filaments. There are at least two possibly three different arrangements of accessory structures at the proximal end of membranellar basal bodies. All membranellar basal bodies appear to have a dense material at the proximal end from which filaments emanate. Some of these basal bodies have accessory microtubules and filaments emanating from this dense material. A possible third arrangement is represented by basal bodies which have lateral projections, from the proximal end, of accessory microtubules and filaments which constitute cross or peripheral connectives. There are at least three examples of direct associations between oral apparatus microtubules and filaments: (1) filaments which form links between basal body triplet microtubules, (2) filaments which link the material of the basal plate to internal basal body microtubules, (3) filaments which link together microtubule bundles from membranellar connectives. KCl extraction of the isolated oral apparatus resulted in the selective solubilization of oral apparatus basal bodies, remnants of ciliary axonemes and fused basal plates. Based on their response to KCl extraction two distinct sets of morphologically similar micro tubules can be identified: (a) microtubules which constitute the internal structure of basal bodies and ciliary axonemes, (b) microtubules which constitute the fiber connectives between basal bodies.  相似文献   

17.
The misaligned undulating membrane (mum) mutant of Tetrahymena thermophila is a non-conditional, single gene recessive mutation. The major effect of the mum mutation is the production of multiple undulating membrane (UM) fragments in the oral apparatus (OA). The ultrastructure of the UM fragments of mum OAs is identical to that of the single UM of wild-type OAs. Analysis of OA development at midbody using a combination of light microscopy of protargol-stained cells and SEM of demembranated whole cells showed that the phenotypic effect of the mum mutation first becomes evident during mid to late stage 4 and is fully manifested in early stage 5. The effect of the mutation involves a proliferation of excess basal bodies in the UM field. Subsequent events in the development of the mum OA from mid to late stage 5 are identical to those in wild-type OAs. This study suggests that the mum mutation establishes conditions that allow the production of multiple UMs and thus reveals that the UM field is competent for the complete and coordinated development of several adjacent UMs. This level of regional control is not clearly evident when a single UM is present. The comparison of development of wild-type and mum OAs required an extensive reanalysis of stages 4 and 5 of normal oral development. On the basis of current and previous observations, we propose a new and more subdivided staging system for oral development in Tetrahymena.  相似文献   

18.
中等纤维是脊椎动物细胞中普遍存在的一种细胞骨架成分,在一些无脊椎动物细胞中也发现有这类成分存在。据报道,枪乌贼的巨  相似文献   

19.
Transformation of Tetrahymena pyriformis to a rapid-swimming (presumably dispersal) form can be induced by washing cells and suspending them in distilled H2O, Dryl's solution or 10 mM Tris. Transformation is possible with high efficiency in mass cultures of axenically grown cells within approximately 5 h at 30 C. The radically different phenotype produced during transformation is characterized by a more elongate body form, increased numbers of somatic basal bodies and cilia, a long caudal cilium and oral membranelles positioned beneath the cell surface. DNA quantities characteristic of G1, S, and G2 cells are found in these transformed ciliates, suggesting that achievement of a particular stage in the DNA-division cycle is not a prerequisite for transformation. Preliminary observations on cells belonging to syngens 2-12 indicate that they also have a capacity to form a caudal cilium, but that the amicronucleate strain GL-C does not. Possible relevance of the transformed phenotype for taxonomy of Tetrahymena is discussed.  相似文献   

20.
The literature to date suggests a role for myosin II in rear retraction, including evidence that myosin undergoes a characteristic 'C'-to-spot redistribution at the cell posterior which is associated with retraction. Here we investigate the mechanism of both retraction and the'C'-to-spot using Dictyostelium cells containing mutant forms of myosin that affect its polymerization. 3 x Asp-myosin forms few if any filaments. When 3 x Asp cells are added to a wild-type mound, the mutant cells move directionally, but rear retraction is markedly delayed,demonstrating that myosin II filaments are essential for efficient retraction. In addition, using a GFP-tagged 3 x Asp-myosin, we observed a posterior spot pattern associated with retraction,but no cortical 'C' pattern preceding it. This suggests that filamentous myosin is required to produce the 'C', and that its failure to form results in defective rear retraction. In contrast, an alternate mutant myosin that forms filaments constitutively, 3 x Ala-myosin, forms 'Cs' and then spot patterns at the posterior, but in the interim the spots do not disintegrate. This suggests that spot dissolution occurs by filament depolymerization. In summary our data demonstrate a role for myosin II and the 'C'-to-spot in efficient rear retraction, and define filament assembly as critical for formation of the 'C' and filament disassembly as critical for dissolution of the spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号