首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role of activation of c-Jun NH2-terminal kinase 1 (JNK1) in mediating cisplatin-induced apoptosis and the possibility of induction of JNK activity in triggering relation to DNA damage and drug resistance. We investigated the difference of cisplatin-induced activation of JNK pathway and H2O2 alteration between cisplatin-sensitive human ovarian carcinoma cell line A2780 and its resistant variant A2780/DDP. JNK, p-JNK protein, and extracellular H2O2 levels were determined in both A2780 and A2780/DDP cells which were transfected with dominant negative allele of JNK and recombinant JNK1 separately. Both A2780 and A2780/DDP were treated with CDDP, the JNK pathway was activated and a prolonged JNK activation was maintained for at least 12 h in A2780, and only a transient activation (3 h) was detected in A2780/DDP in response to cisplatin treatment. Inhibition of JNK activity by transfection with a dominant negative allele of JNK blocked CDDP-induced apoptosis significantly in A2780 cells. Selective stimulation of the JNK pathway by lipofectamine-mediated delivery of recombinant JNK1 led to activation of c-Jun and decrease of extracellular H2O2, as well as apoptosis sensitization to CDDP in A2780/DDP cells. We concluded that JNK pathway might play an important role in mediating cisplatin-induced apoptosis in A2780 cells, and the duration of JNK activation might be critical in determining whether cells survive or undergo apoptosis. The resistance to CDDP can be reversed through activating c-Jun and decreasing extracellular generation of H2O2 by pcDNA3(FLAG)-JNK1-wt transfection in A2780/DDP cells.  相似文献   

2.
In this study, we investigated the involvement of Akt and members of the mitogen-activated protein kinase (MAPK) superfamily, including ERK, JNK, and p38 MAPK, in gemcitabine-induced cytotoxicity in human pancreatic cancer cells. We found that gemcitabine induces apoptosis in PK-1 and PCI-43 human pancreatic cancer cell lines. Gemcitabine specifically activated p38 MAPK in a dose- and time-dependent manner. A selective p38 MAPK inhibitor, SB203580, significantly inhibited gemcitabine-induced apoptosis in both cell lines, suggesting that phosphorylation of p38 MAPK may play a key role in gemcitabine-induced apoptosis in pancreatic cancer cells. A selective JNK inhibitor, SP600125, failed to inhibit gemcitabine-induced apoptosis in both cell lines. MKK3/6, an upstream activator of p38 MAPK, was phosphorylated by gemcitabine, indicating that the MKK3/6-p38 MAPK signaling pathway is indeed involved in gemcitabine-induced apoptosis. Furthermore, gemcitabine-induced cleavage of the caspase substrate poly(ADP-ribose) polymerase was inhibited by pretreatment with SB203580, suggesting that activation of p38 MAPK by gemcitabine induces apoptosis through caspase signaling. These results together suggest that gemcitabine-induced apoptosis in human pancreatic cancer cells is mediated by the MKK3/6-p38 MAPK-caspase signaling pathway. Further, these results lead us to suggest that p38 MAPK should be investigated as a novel molecular target for human pancreatic cancer therapies.  相似文献   

3.
Koh  Vivien  Kwan  Hsueh Yin  Tan  Woei Loon  Mah  Tzia Liang  Yong  Wei Peng 《BMC genomics》2016,17(13):1029-96
Background

Gemcitabine is used as a standard drug treatment for non-small cell lung cancer (NSCLC), but treatment responses vary among patients. Our previous studies demonstrated that POLA2 + 1747 GG/GA single nucleotide polymorphism (SNP) improves differential survivability and mortality in NSCLC patients. Here, we determined the association between POLA2 and gemcitabine treatment in human lung cancer cells.

Results

Human PC9, H1299 and H1650 lung cancer cell lines were treated with 0.01-100 μM gemcitabine for 72 h. Although all 3 cell lines showed decreased cell viability upon gemcitabine treatment, H1299 was found to be the most sensitive to gemcitabine treatment. Next, sequencing was performed to determine if POLA2 + 1747 SNP might be involved in gemcitabine sensitivity. Data revealed that all 3 cell lines harbored the wild-type POLA2 + 1747 GG SNP, indicating that the POLA2 + 1747 SNP might not be responsible for gemcitabine sensitivity in the cell lines studied. Silencing of POLA2 gene in H1299 was then carried out by siRNA transfection, followed by gemcitabine treatment to determine the effect of POLA2 knockdown on chemosensitivity to gemcitabine. Results showed that H1299 exhibited increased resistance to gemcitabine after POLA2 knockdown, suggesting that POLA2 does not act alone and may cooperate with other interacting partners to cause gemcitabine resistance.

Conclusions

Collectively, our findings showed that knockdown of POLA2 increases gemcitabine resistance in human lung cancer cells. We propose that POLA2 may play a role in gemcitabine sensitivity and can be used as a prognostic biomarker of patient outcome in NSCLC pathogenesis.

  相似文献   

4.
Pancreatic cancer is one of the most aggressive human malignancies with extremely poor prognosis. The moderate activity of the current standard gemcitabine and gemcitabine-based regimens was due to pre-existing or acquired chemo-resistance of pancreatic cancer cells. In this study, we explored the potential role of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in gemcitabine resistance, and studied the underlying mechanisms. We found that NU-7026 and NU-7441, two DNA-PKcs inhibitors, enhanced gemcitabine-induced cytotoxicity and apoptosis in PANC-1 pancreatic cancer cells. Meanwhile, PANC-1 cells with siRNA-knockdown of DNA-PKcs were more sensitive to gemcitabine than control PANC-1 cells. Through the co-immunoprecipitation (Co-IP) assay, we found that DNA-PKcs formed a complex with SIN1, the latter is an indispensable component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). DNA-PKcs–SIN1 complexation was required for Akt activation in PANC-1 cells, while inhibition of this complex by siRNA knockdown of DNA-PKcs/SIN1, or by DNA-PKcs inhibitors, prevented Akt phosphorylation in PANC-1 cells. Further, SIN1 siRNA-knockdown also facilitated gemcitabine-induced apoptosis in PANC-1 cells. Finally, DNA-PKcs and p-Akt expression was significantly higher in human pancreatic cancer tissues than surrounding normal tissues. Together, these results show that DNA-PKcs is important for Akt activation and gemcitabine resistance in PANC-1 pancreatic cancer cells.  相似文献   

5.
In a previous study, we showed that induction of ICAM-3 endows radioresistance in cervical cancer [1]. To ascertain whether ICAM-3 also promotes anticancer drug resistance, mock control (H1299/pcDNA3) or ICAM-3-expressing stable transfectants (H1299/ICAM-3) of the non-small cell lung cancer (NSCLC) cell line, NCI-H1299, were generated and treated with the microtubule-damaging agents, paclitaxel (TXL) and vincristine (VCS). TXL-/VCS-treated H1299/ICAM-3 cells showed significantly lower levels of apoptosis, activation of caspases-3, 8 or 9, and decrease in anti-apoptotic protein levels, compared to H1299/pcDNA3 cells. Our data clearly indicate that ICAM-3 promotes drug resistance via inhibition of apoptosis. We additionally showed that Akt, ERK, and CREB-2 are located downstream of ICAM-3, and activation of the ICAM-3-Akt/ERK-CREB-2 pathway induces resistance against TXL and VCS. ICAM-3-expressing stable NCI-H460/ICAM-3 transfectant cells and radioresistant SiHa cells endogenously overexpressing ICAM-3 additionally showed drug resistance against TXL and VCS via activation of the ICAM-3-Akt/ERK-CREB-2 pathway. The finding that ICAM-3 endows drug resistance as well as radioresistance supports its potential utility as a major therapeutic target against cancer.  相似文献   

6.
Defects in apoptosis are frequently the cause of cancer emergence, as well as cellular resistance to chemotherapy. These phenotypes may be due to mutations of the tumor suppressor TP53 gene. In this study, we examined the effect of various mitotic spindle poisons, including the new isocombretastatin derivative isoNH2CA-4 (a tubulin-destabilizing molecule, considered to bind to the colchicine site by analogy with combretastatin A-4), on BL (Burkitt lymphoma) cells. We found that resistance to spindle poison-induced apoptosis could be reverted in tumor protein p53 (TP53)-mutated cells by EBV (Epstein Barr virus) infection. This reversion was due to restoration of the intrinsic apoptotic pathway, as assessed by relocation of the pro-apoptotic molecule Bax to mitochondria, loss of mitochondrial integrity and activation of the caspase cascade with PARP (poly ADP ribose polymerase) cleavage. EBV sensitized TP53-mutated BL cells to all spindle poisons tested, including vincristine and taxol, an effect that was systematically downmodulated by pretreatment of cells with inhibitors of p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. Exogenous activation of p38 and JNK pathways by dihydrosphingosine reverted resistance of TP53-mutated BL cells to spindle poisons. Dihydrosphingosine treatment of TP53-deficient Jurkat and K562 cell lines was also able to induce cell death. We conclude that activation of p38 and JNK pathways may revert resistance of TP53-mutated cells to spindle poisons. This opens new perspectives for developing alternative therapeutic strategies when the TP53 gene is inactivated.  相似文献   

7.
Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.  相似文献   

8.
It has been suggested that the alpha-class glutathione S-transferases (GSTs) protect various cell types from oxidative stress and lipid peroxidation (LPO). In order to examine the protective role of alpha-class GST isozyme hGSTA1-1 against doxorubicin (DOX)-induced lipid peroxidation, cytotoxicity, and apoptosis, human small cell lung cancer (SCLC) H69 cells were stably transfected with hGSTA1. Immunological and biochemical characterization of hGSTA1-transfected cells revealed the expression of functionally active hGSTA1-1 localized near the cellular plasma membranes. hGSTA1-transfected cells acquired significantly increased resistance to the DOX-induced cytotoxicity by suppressing lipid peroxidation levels in these cells. Overexpression of hGSTA1-1 in cells inhibited DOX-mediated depletion of GSH and higher GSH levels were found in DOX-treated hGSTA1-transfected cells as compared with empty vector-transfected controls. hGSTA1-1 overexpression also provided protection to cells from DOX-induced apoptosis by inhibiting phosphorylation of c-Jun-N-terminal kinases (JNK), caspase-3 activation, and by preserving the levels of anti-apoptotic protein Bcl-2. These results are consistent with the idea that the alpha-class GSTs provide protection against oxidative stress by attenuating lipid peroxidation and these enzymes can modulate signaling for apoptosis.  相似文献   

9.
The gastric pathogen Helicobacter pylori (H. pylori) is suggested to be associated with gastric cancer progression. In this study, we investigated the effect of H. pylori on urokinase plasminogen activator receptor (uPAR) expression which has been known to correlate closely with gastric cancer invasion. H. pylori induced the uPAR expression in a time- and concentration-dependent manner. Specific inhibitors and inactive mutants of MEK-1 and JNK were found to suppress the H. pylori-induced uPAR expression and the uPAR promoter activity. Electrophoretic mobility shift assay and transient transfection study using an AP-1 decoy oligonucleotide confirmed that the activation of AP-1 is involved in the H. pylori-induced uPAR upregulation. The AGS cells treated with H. pylori showed a remarkably enhanced invasiveness, and this effect was partially abrogated by uPAR-neutralizing antibodies. These results suggest that H. pylori induces uPAR expression via Erk-1/2, JNK, and AP-1 signaling pathways and, in turn, stimulates the cell invasiveness in human gastric cancer AGS cells.  相似文献   

10.
c-Jun N-terminal kinase (JNK) is activated by dual phosphorylation of both threonine and tyrosine residues in the phosphorylation loop of the protein in response to several stress factors. However, the precise molecular mechanisms for activation after phosphorylation remain elusive. Here we show that Pin1, a peptidyl-prolyl isomerase, has a key role in the JNK1 activation process by modulating a phospho-Thr-Pro motif in the phosphorylation loop. Pin1 overexpression in human breast cancer cell lines correlates with increased JNK activity. In addition, small interfering RNA (siRNA) analyses showed that knockdown of Pin1 in a human breast cancer cell line decreased JNK1 activity. Pin1 associates with JNK1, and then catalyzes prolyl isomerization of the phospho-Thr-Pro motif in JNK1 from trans- to cis-conformation. Furthermore, Pin1 enhances the association of JNK1 with its substrates. As a result, Pin1(-/-) cells are defective in JNK activation and resistant to oxidative stress. These results provide novel insights that, following stress-induced phosphorylation of Thr in the Thr-Pro motif of JNK1, JNK1 associates with Pin1 and undergoes conformational changes to promote the binding of JNK1 to its substrates, resulting in cellular responses from extracellular signals.  相似文献   

11.
BackgroundNon-small cell lung cancer (NSCLC) is a leading cause of cancer death. Branched-chain amino acid (BCAA) homeostasis is important for normal physiological metabolism. Branched-chain keto acid dehydrogenase kinase (BCKDK) is a rate-limiting enzyme involved in BCAA degradation. BCAA metabolism has been highlighted in human cancers. The aberrant activation of mTORC1 has been implicated in tumor progression. Rab1A is a small GTPase, an activator of mTORC1, and an oncogene. This study aimed to reveal the specific role of BCKDK-BCAA-Rab1A-mTORC1 signaling in NSCLC.MethodsWe analyzed a cohort of 79 patients with NSCLC and 79 healthy controls. Plasma BCAA assays, immunohistochemistry, and network and pathway analyses were performed. The stable cell lines BCKDK-KD, BCKDK-OV A549, and H1299 were constructed. BCKDK, Rab1A, p-S6 and S6 were detected using western blotting to explore their molecular mechanisms of action in NSCLC. The effects of BCAA and BCKDK on the apoptosis and proliferation of H1299 cells were detected by cell function assays.ResultsWe demonstrated that NSCLC was primarily involved in BCAA degradation. Therefore, combining BCAA, CEA, and Cyfra21-1 is clinically useful for treating NSCLC. We observed a significant increase in BCAA levels, downregulation of BCKDHA expression, and upregulation of BCKDK expression in NSCLC cells. BCKDK promotes proliferation and inhibits apoptosis in NSCLC cells, and we observed that BCKDK affected Rab1A and p-S6 in A549 and H1299 cells via BCAA modulation. Leucine affected Rab1A and p-S6 in A549 and H1299 cells and affected the apoptosis rate of H1299 cells.In conclusion, BCKDK enhances Rab1A-mTORC1 signaling and promotes tumor proliferation by suppressing BCAA catabolism in NSCLC, suggesting a new biomarker for the early diagnosis and identification of metabolism-based targeted approaches for patients with NSCLC.  相似文献   

12.
Singh T  Sharma SD  Katiyar SK 《PloS one》2011,6(11):e27444
Lung cancer remains the leading cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) represents approximately 80% of total lung cancer cases. The use of non-toxic dietary phytochemicals can be considered as a chemotherapeutic strategy for the management of the NSCLC. Here, we report that grape seed proanthocyanidins (GSPs) induce apoptosis of NSCLC cells, A549 and H1299, in vitro which is mediated through increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase (PARP). Pre-treatment of A549 and H1299 cells with the caspase-3 inhibitor (z-DEVD-fmk) significantly blocked the GSPs-induced apoptosis of these cells confirmed that GSPs-induced apoptosis is mediated through activation of caspases-3. Treatments of A549 and H1299 cells with GSPs resulted in an increase in G1 arrest. G0/G1 phase of the cell cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin-dependent kinase inhibitors (Cdki) and cyclins. Our western blot analyses showed that GSPs-induced G1 cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), and a simultaneous decrease in the levels of Cdk2, Cdk4, Cdk6 and cyclins. Further, administration of 50, 100 or 200 mg GSPs/kg body weight of mice by oral gavage (5 d/week) markedly inhibited the growth of s.c. A549 and H1299 lung tumor xenografts in athymic nude mice, which was associated with the induction of apoptotic cell death, increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3 in tumor xenograft cells. Based on the data obtained in animal study, human equivalent dose of GSPs was calculated, which seems affordable and attainable. Together, these results suggest that GSPs may represent a potential therapeutic agent for the non-small cell lung cancer.  相似文献   

13.
Ke H  Pei J  Ni Z  Xia H  Qi H  Woods T  Kelekar A  Tao W 《Experimental cell research》2004,298(2):329-338
Lats2, also known as Kpm, is the second mammalian member of the novel Lats tumor suppressor gene family. Recent studies have demonstrated that Lats2 negatively regulates the cell cycle by controlling G1/S and/or G2/M transition. To further understand the role of Lats2 in the control of human cancer development, we have expressed the protein in human lung cancer cells by transduction of a replication-deficient adenovirus expressing human Lats2 (Ad-Lats2). Using a variety of techniques, including Annexin V uptake, cleavage of PARP, and DNA laddering, we have demonstrated that the ectopic expression of human Lats2 induced apoptosis in two lung cancer cell lines, A549 and H1299. Caspases-3, 7, 8, and 9 were processed in the Ad-Lats2-transduced cells; however, it was active caspase-9, not caspase-8, that initiated the caspase cascade. Inhibitors specific to caspase-3 and 9 delayed the onset of Lats2-mediated apoptosis. Western blot analysis revealed that anti-apoptotic proteins, BCL-2 and BCL-x(L), but not the pro-apoptotic protein, BAX, were downregulated in Ad-Lats2-transduced human lung cancer cells. Overexpression of either Bcl-2 or Bcl-x(L) in these cells lead to the suppression of Lats2-mediated caspase cleavage and apoptosis. These results show that Lats2 induces apoptosis through downregulating anti-apoptotic proteins, BCL-2 and BCL-x(L), in human lung cancer cells.  相似文献   

14.
EGFR-TKI靶向治疗在非小细胞肺癌(non-small cell lung cancer, NSCLC)综合治疗中显示出重要作用;然而,耐药性却极大限制其临床治疗效果。受体酪氨酸激酶样孤儿受体(receptor tyrosine kinase-like orphan receptor 1, ROR1)是I型受体酪氨酸激酶家族中的成员,在肿瘤发生发展中发挥重要作用。本研究拟探讨ROR1介导非小细胞肺癌吉非替尼耐药的作用及机制。采用吉非替尼反复诱导非小细胞肺癌HCC827细胞,建立吉非替尼耐药细胞株HCC827/GR。应用荧光定量PCR和Western 印迹检测HCC827/GR内ROR1的表达。采用shRNA的方法体外检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化,采用体外检测ROR1过表达前后HCC827对吉非替尼耐药的变化。体内检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化。Western 印迹检测HCC827/GR内ROR1下游信号分子的活化。实时荧光定量PCR及Western 印迹结果显示,HCC827/GR耐药细胞中的ROR1 mRNA和蛋白质表达水平显著高于HCC827敏感细胞。体外干扰ROR1表达,可明显增强HCC827/GR耐药细胞对吉非替尼的敏感性 (IC50 15.3±3.69 vs. 4.2±1.38),增加吉非替尼诱导的细胞凋亡 (20.5±2.52 vs. 41.8±3.74)。体外过表达ROR1显著增强HCC827敏感细胞对吉非替尼的耐药性(IC50 0.8±0.52 vs. 2.2±0.87)。体内裸鼠移植瘤实验同样发现,干扰ROR1能增强HCC827/GR移植瘤对吉非替尼的敏感性。进一步研究发现,AKT/FOXO1信号在HCC827/GR耐药细胞中异常活化,而干扰ROR1能够抑制AKT的磷酸化,并上调FOXO1的表达。上述结果表明,ROR1参与非小细胞肺癌吉非替尼耐药,抑制ROR1能够逆转吉非替尼耐药,其机制与ROR1调控AKT/FOXO1信号有关。  相似文献   

15.
Singh M  Sharma H  Singh N 《Mitochondrion》2007,7(6):367-373
Cervical cancer is the most common cancer amongst females in India and is associated with high risk HPVs, reactive oxygen species (ROS), and excessive inflammation in most cases. ROS in turn affects the expression of pro- and anti-apoptotic proteins. The objective of the present study was to elucidate the effect of hydrogen peroxide (H(2)O(2)) on apoptotic signaling molecules in vitro. HeLa cell line expresses the Human papilloma virus - 18, E6 oncoprotein which causes the ubiquitin mediated degradation of p53 protein and is thus p53 deficient. p53 is known to act as a cellular stress sensor and triggers apoptosis. p73, a member of the p53 family also induces apoptosis in response to DNA damaging agents but unlike p53, it is infrequently mutated in human tumors. We demonstrate here, that in HeLa cells, apoptosis is triggered by H(2)O(2) via the mitochondrial pathway involving upregulation of p73, and its downstream target Bax. This was accompanied by upregulation of ERK, JNK, c-Myc, Hsp-70 and down regulation of anti-apoptotic Bcl-XL, release of cytochrome c from mitochondria and activation of caspases-9 and -3.  相似文献   

16.
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.  相似文献   

17.
E2F1 介导8-氯-腺苷引起的人肺癌细胞H1299的凋亡   总被引:1,自引:0,他引:1  
8-氯-腺苷(8-Cl-adenosine,8-Cl-Ado)可诱导人非小细胞性肺癌细胞H1299发生凋亡,但其分子机制还没有阐明.首先用四唑盐(MTT)比色法检测了8-Cl-Ado 对H1299 细胞的生长抑制作用.进一步采用蛋白质免疫印迹法(Western blotting) 检测了8-Cl-Ado 处理H1299细胞后,procaspase-3 的激活情况以及E2F1的蛋白水平.通过用pcDNA-HA-E2F1表达载体和pSUPER-E2F1 RNA 干扰载体分别转染H1299 细胞,研究在E2F1 过表达和RNA 干扰(RNA interference, RNAi)两种情况下对凋亡的影响.实验结果表明,8-Cl-Ado可抑制H1299 细胞的生长,激活凋亡关键执行蛋白procaspase-3,升高E2F1 蛋白水平.当E2F1 过表达后,同时伴有procaspase-3 的激活,而E2F1 表达受到抑制后,与对照相比,8-Cl-Ado 引起的procaspase-3 的激活被明显抑制,说明E2F1 介导8-Cl-Ado 引起的人肺癌细胞H1299 的凋亡.  相似文献   

18.
Colorectal cancer is the second most common cause of cancer death in the world and about half of the patients with colorectal cancer require adjuvant therapy after surgical resection. Therefore, the eradication of cancer cells via chemotherapy constitutes a viable approach to treating patients with colorectal cancer. In this study, the effects of bufalin isolated from a traditional Chinese medicine were evaluated and characterized in HT-29 and Caco-2 human colon cancer cells. Contrary to its well-documented apoptosis-promoting activity in other cancer cells, bufalin did not cause caspase-dependent cell death in colon cancer cells, as indicated by the absence of significant early apoptosis as well as poly(ADP-ribose) polymerase and caspase-3 cleavage. Instead, bufalin activated an autophagy pathway, as characterized by the accumulation of LC3-II and the stimulation of autophagic flux. The induction of autophagy by bufalin was linked to the generation of reactive oxygen species (ROS). ROS activated autophagy via the c-Jun NH2-terminal kinase (JNK). JNK activation increased expression of ATG5 and Beclin-1. ROS antioxidants (N-acetylcysteine and vitamin C), the JNK-specific inhibitor SP600125, and JNK2 siRNA attenuated bufalin-induced autophagy. Our findings unveil a novel mechanism of drug action by bufalin in colon cancer cells and open up the possibility of treating colorectal cancer through a ROS-dependent autophagy pathway.  相似文献   

19.

Background

Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylumarmatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs.

Results

ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-terminal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE.

Conclusion

Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0037-4) contains supplementary material, which is available to authorized users.  相似文献   

20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号