首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.  相似文献   

2.
The 20S proteasome was purified from oocytes of the starfish Asterina pectinifera and its enzymatic properties were investigated. The chymotrypsin-like activities were potently inhibited by PSI as well as MG115, whereas the trypsin-like and peptidyl-glutamyl peptide-hydrolyzing (PGPH) activities were not or only weakly inhibited by PSI and MG115. The inhibitory ability of MG115 toward germinal vesicle breakdown (GVBD) coincided with those toward the trypsin-like and PGPH activities, and PSI showed no inhibitory effect on GVBD. We have previously reported that the inhibition pattern toward GVBD of peptidyl-argininals, which potently inhibited the proteasomal trypsin-like activity rather than the chymotrypsin-like activity, correlated with the inhibition pattern toward the chymotrypsin-like activity of the proteasome. These results, together with the peptidyl-argininals scarcely inhibiting the PGPH activity at concentrations sufficient for the inhibition toward GVBD, indicate that both the chymotrypsin-like and trypsin-like activities, but not the PGPH activity, of the proteasome are responsible for degradation of the physiological substrate during starfish oocyte maturation. It was also suggested that the inhibition of a single catalytic site of the proteasome is not sufficient for prevention of the proteasomal function.  相似文献   

3.
C Cardozo  C Michaud  M Orlowski 《Biochemistry》1999,38(30):9768-9777
Two catalytic components of the multicatalytic proteinase complex (MPC, proteasome) designated as chymotrypsin-like (ChT-L) and branched chain amino acid preferring (BrAAP) cleave bonds after hydrophobic amino acids. The possible involvement of the ChT-L and peptidylglutamyl-peptide hydrolyzing (PGPH) activities in the cleavage of bonds attributed to the BrAAP component was examined. Several inhibitors of the ChT-L activity containing a phenylalaninal group did not affect the BrAAP activity at concentrations that were more than 150 times higher than their K(i) values for the ChT-L activity. Concentrations of lactacystin that inactivated more than 90% of the ChT-L activity had no effect on the BrAAP activity. Concentrations of 3,4-dichloroisocoumarin (DCI) that inactivated the ChT-L activity activated by up to 10-fold the BrAAP activity toward synthetic substrates and by more than 2-fold the degradation of the insulin B chain in a reaction not inhibited by Z-LGF-CHO, a selective inhibitor of the ChT-L activity. These findings are incompatible with any significant involvement of the ChT-L activity in the cleavage of BrAAP substrates. Both the native and DCI-treated MPC cleaved the insulin B chain mainly after acidic residues in a reaction inhibited by Z-GPFL-CHO, an inhibitor of the BrAAP and PGPH activities. DCI exposure did not result in acylation of the N-terminal threonine in the active site of the Y subunit. These results suggest involvement of the PGPH activity in the cleavage of BrAAP substrates, but this conclusion is incompatible with DCI activation of the BrAAP activity and inactivation of the PGPH activity, and with the finding that proteins inhibiting the PGPH activity had no effect on the BrAAP activity. Rationalization of these contradictions is discussed.  相似文献   

4.
Pituitary cation-sensitive neutral endopeptidase splits peptide bonds on the carboxyl side of hydrophobic amino acids (chymotrypsin-like activity), basic amino acids (trypsin-like activity), and acidic amino acids (peptidyl-glutamyl-peptide bond hydrolyzing activity). All three activities copurify, are inhibited by cations, and reside in a single high-molecular weight soluble protein complex. Treatment with sodium dodecylsulfate and 2-mercaptoethanol dissociates this complex into five low-molecular weight components. Incubation of the complex at 37 degrees C in buffers of high ionic strength produces aggregation and progressive loss of all three activities. Experiments with inhibitors and activators indicate that the three activities are catalyzed by distinct components. Benzyloxycarbonyl-glycyl-glycyl-leucinal, a peptide aldehyde transition state analog of the substrate used to measure the chymotrypsin-like activity, exclusively inhibits that activity (Ki = 2.5 x 10(-4) M), while markedly activating the trypsin-like activity. The trypsin-like activity is inhibited by leupeptin (Ki = 1.2 x 10(-6) M) and by sulfhydryl blocking agents, and activated by thiols, suggesting that this activity is due to a thiol protease. The peptidylglutamyl-peptide hydrolyzing activity is activated almost 10-fold by low concentrations of sodium dodecylsulfate, inhibited by bovine serum albumin, and suppressed at high enzyme concentrations, suggesting that this component readily interacts with other proteins, including the complex itself. The results indicate that cation-sensitive neutral endopeptidase is a multicatalytic protease complex whose distinct proteolytic activities are associated with separate components of this high-molecular weight protein.  相似文献   

5.
The chymotrypsin-like (CT-L) activity of the proteasome is downregulated by substrates of the peptidyl-glutamyl peptide hydrolyzing (PGPH) activity. To investigate the nature of such interactions, we synthesized selective alpha',beta'-epoxyketone inhibitors of the PGPH activity. In cellular proliferation and protein degradation assays, these inhibitors revealed that selective PGPH inhibition was insufficient to inhibit protein degradation, indicating that the CT-L and PGPH sites function independently. We also demonstrated that CT-L inhibition by a PGPH substrate does not require the occupancy of the PGPH site or hydrolysis of the PGPH substrate. Thus, these results support a model in which a substrate of one subunit regulates the activity of another via binding to a noncatalytic site(s) rather than through binding to an active site.  相似文献   

6.
Proteasomes are the primary sites for protein degradation in mammalian cells. Each proteasome particle contains two chymotrypsin-like, two trypsin-like, and two caspase-like proteolytic sites. Previous studies suggest a complex network of allosteric interactions between these catalytic and multiple regulatory sites. We used positional scanning combinatorial substrate libraries to determine the extended substrate specificity of the caspase-like sites. Based on this analysis, several new substrates were synthesized, the use of which confirmed earlier observations that caspase-like sites (often termed postglutamyl peptide hydrolase) cleave after aspartates better than after glutamates. Highly selective inhibitors of the caspase-like sites were also generated. They stimulated trypsin-like activity of yeast 20 S proteasomes up to 3-fold but not when binding of the inhibitor to the caspase-like sites was prevented in a mutant carrying an uncleaved propeptide. Although substrates of the caspase-like sites allosterically inhibit the chymotrypsin-like activity, inhibitors of the caspase-like sites do not affect the chymotrypsin-like sites. Furthermore, when caspase-like sites were occupied by the uncleaved propeptide or inhibitor, their substrates still inhibited the chymotrypsin-like activity. Thus, occupancy of the caspase-like sites stimulates the trypsin-like activity of proteasomes, but substrates of the caspase-like sites inhibit the chymotrypsin-like activity by binding to a distinct noncatalytic site.  相似文献   

7.
The multicatalytic proteinase complex (MPC) exhibits three proteolytic activities designated as trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing (PGPHA). Evidence based on inhibitor and specificity studies indicates that each of the three activities is associated with a different component of the complex. Inactivation of the three activities by the serine proteinase inhibitor, 3,4-dichloroisocoumarin (DCI), reveals the presence of an additional DCI-resistant component that cleaves natural peptides including neurotensin, dynorphin, angiotensin II, the oxidized B-chain of insulin, and also proinsulin at a rate greater than that of the native uninhibited complex. Examination of the reaction products of neurotensin (NT) and proinsulin degradation showed cleavage of the Ile12-Leu13 bond in NT and cleavage of the Leu44-Ala45 and Val39-Gly40 bonds within the connecting peptide (C-chain) of bovine proinsulin, suggesting preferential cleavage of bonds on the carboxyl side of branched chain amino acids. Although resistant to inhibition by DCI, the component was sensitive to inhibition by the isocoumarin derivatives, 7-amino-4-chloro-3-[3-(isothioureido)propoxy]isocoumarin and 4-chloro-7-guanidino-3-(2-phenylethoxy)isocoumarin. Degradation of NT was activated by leupeptin, chymostatin, and antipain indicating that binding of these aldehyde inhibitors at one site can stimulate proteolytic activity at a different site of the complex. The DCI-resistant component seems to constitute a major component of the complex active in degradation of natural peptides and proteins.  相似文献   

8.
Tyropeptin A, a potent proteasome inhibitor, was isolated from the culture broth of Kitasatospora sp. MK993-dF2. We synthesized the derivatives of tyropeptin A to enhance its inhibitory potency. Among the synthesized derivatives, the most potent compound, TP-104, exhibited a 20-fold inhibitory potency enhancement for chymotrypsin-like activity of 20S proteasome compared to tyropeptin A. Additionally, TP-110 specifically inhibited the chymotrypsin-like activity, but did not inhibit the post-glutamyl-peptide hydrolyzing (PGPH) and the trypsin-like activities of 20S proteasome. In vitro TP-110 strongly inhibited the growth of various cell lines.  相似文献   

9.
The effect of oxidative stress induced by neurotoxic metal ions on the properties of the brain 20S proteasome or multicatalytic proteinase complex (MPC) has been studied. Exposure of the 20S proteasome to increasing amounts of Fe(III), Fe(II), Cu(II) or Zn(II) affects its main hydrolytic activities: trypsin-like (T-L), chymotrypsin-like (ChT-L), peptidylglutamyl-peptide hydrolase (PGPH), branched-chain amino acid preferring (BrAAP) and caseinolytic activities, although in different ways. T-L activity showed gradual activation by both iron ions but inhibition by Cu(II) and Zn(II). ChT-L and PGPH activities were inhibited whereas BrAAP activity was widely activated by all the tested metal salts except for zinc ions. Moreover, the exposure to ferrous salt increased the degradation rate of casein. The functional effects appear to be linked to oxidation-induced modifications, as demonstrated by an increase of carbonyl groups following the exposure to metal ions. In addition, modifications induced by ferrous salt on the catalytic subunits were also supported by western blot analyses performed using anti-X, anti-Y and anti-Z antibodies. The results obtained clearly indicate that metal-catalyzed oxidation strongly affects the functions of the brain 20S proteasome, even though the catalytic subunits seem to be differently influenced by oxidative phenomena.  相似文献   

10.
Tyropeptin A, a new potent proteasome inhibitor, was produced by Kitasatospora sp. MK993-dF2. To enhance the inhibitory potency of tyropeptin A, we constructed the structural model of tyropeptin A bound to the site responsible for the chymotrypsin-like activity of mammalian 20S proteasome. Based on these modeling experiments, we designed and synthesized several derivatives of tyropeptin A. Among them, the most potent compound, TP-104, exhibited a 20-fold enhancement in its inhibitory potency compared to tyropeptin A. Additionally, TP-110 specifically inhibited the chymotrypsin-like activity, but did not inhibit the PGPH and the trypsin-like activities.  相似文献   

11.
Chicken ovomucoid (CO), an effective inhibitor of bovine trypsin, has a reactive site in each of three tandem domains. When CO was subjected to inhibition assay by the method of Green and Work, the second domain (CO Domain II) inhibited bovine trypsin but not TLE-Se, a trypsin-like enzyme from Streptomyces erythraeus, and the first domain (CO Domain I) inhibited neither bovine trypsin nor TLE-Se. However, when the interaction between CO and TLE-Se was analyzed by means of a Lineweaver-Burk plot, it was found that the ovomucoid exhibited competitive inhibition of the bacterial protease at pH 8.0 (Ki = 5.2 microM). In this case, the reactive-site peptide bonds of the first and second domains were specifically hydrolyzed. The isolated CO Domain I also exhibited competitive inhibition of TLE-Se (Ki = 3.1 microM), which specifically hydrolyzed its reactive-site peptide bond.  相似文献   

12.
Although proteasomes are mainly located in the cytosol, it is known that significant amounts are also associated with endoplasmic reticulum (ER) membranes where they may play a role in the degradation of specific ER membrane proteins. The present studies were undertaken to compare ER and cytosolic proteasomal activities in WB rat liver cells. N-Heptyl-beta-thioglucopyranoside (HTG) extracts of membrane or cytosol fractions were chromatographed in glycerol/ATP buffers on size-exclusion and ion-exchange columns and the elution profiles of proteasomal peptidase activity and immunoreactive components of the 20S complex, 19S complex, and PA28 were compared. Cytosol fractions showed a single peak of chymotrypsin-like peptidase activity (Cht-L), which was inhibited completely by 5 microM lactacystin (LC) or SDS (0.03%) and corresponded to 26S proteasomes based upon the presence of both 20S and 19S components. By comparison, membrane fractions contained two major peaks of Cht-L activity. The first peak shared the same properties as the peak activity observed in cytosol fractions. However, the second peak was stimulated by SDS and was LC-insensitive (5 microM) and contained trypsin-like (T-L) and peptide-glutamyl peptidase (PGPH) but no cathepsin or calcium-activated protease activities. PA28 activator protein was present in both membrane and cytosol fractions. Thus, the principal difference between cytosolic and membrane activity was that the latter fractions contained a novel membrane-associated LC-insensitive protease(s) catalyzing three of the major peptidase activities of the proteasome.  相似文献   

13.
A search for alternative sterilants in parasitic fish encouraged us to explore the usefulness of proteinase inhibitors for this purpose. Fertilization in sea lamprey species (Petromyzon marinus L.) was inhibited by chymotrypsin and trypsin inhibitors 4'-acetamidophenyl 4-guanidinobenzoate (AGB), chymostatin, tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) when these substances were added into a fertilization medium at the time of fertilization. Preincubation of eggs before fertilization with 100 microM TPCK, but not TLCK, resulted in inhibition of fertilization. Conversely, preincubation of spermatozoa with TLCK, but not TPCK, produced inhibition of fertilization. These data suggest the involvement of the chymotrypsin-like activity of eggs and trypsin-like activity of spermatozoa in fertilization. However, enzymes present in sperm suspensions were able to hydrolyze a chymotrypsin substrate N-glutaryl-L-phenylalanine-p-nitroanilide (GPNA) but not trypsin substrate N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA). The nature of this activity can be characterized as serine protease and our results indicate the involvement of serine proteinases in the fertilization of sea lamprey.  相似文献   

14.
The active site structures of human Q31 granzyme A, murine granzymes (A, B, C, D, E, and F), and human granzymes (A, B, and 3) isolated from cytotoxic T lymphocytes (CTL) were studied with peptide thioester substrates, peptide chloromethyl ketone, and isocoumarin inhibitors. Human Q31, murine, and human granzyme A hydrolyzed Arg- or Lys-containing thioesters very efficiently with kcat/KM of 10(4)-10(5) M-1 s-1. Murine granzyme B was found to have Asp-ase activity and hydrolyzed Boc-Ala-Ala-Asp-SBzl with a kcat/KM value of 2.3 X 10(5) M-1 s-1. The rate was accelerated 1.4-fold when the 0.05 M NaCl in the assay was replaced with CaCl2. The preparation of granzyme B also had significant activity toward Boc-Ala-Ala-AA-SBzl substrates, where AA was Asn, Met, or Ser [kcat/KM = (4-5) X 10(4) M-1 s-1]. Murine granzymes C, D, and E did not hydrolyze any thioester substrate but contained minor contaminating activity toward Arg- or Lys-containing thioesters. Murine granzyme F had small activity toward Suc-Phe-Leu-Phe-SBzl, along with some contaminating trypsin-like activity. Human Q31 granzyme A, murine, and human granzyme A were inhibited quite efficiently by mechanism-based isocoumarin inhibitors substituted with basic groups (guanidino or isothiureidopropoxy). Although the general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inactivated these tryptases poorly, it was the best isocoumarin inhibitor for murine granzyme B (kobs/[I] = 3700-4200 M-1 s-1). Murine and human granzyme B were also inhibited by Boc-Ala-Ala-Asp-CH2Cl; however, the inhibition was less potent than that with DCI. DCI, 3-(3-amino-propoxy)-4-chloroisocoumarin, 4-chloro-3-(3-isothiureidopropoxy)isocoumarin, and 7-amino-4-chloro-3-(3-isothiureidopropoxy)isocoumarin inhibited Q31 cytotoxic T lymphocyte mediated lysis of human JY lymphoblasts (ED50 = 0.5-5.0 microM).  相似文献   

15.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

16.
Peptide aldehyde inhibitors of bacterial peptide deformylases.   总被引:3,自引:0,他引:3  
Bacterial peptide deformylases (PDF, EC 3.5.1.27) are metalloenzymes that cleave the N-formyl groups from N-blocked methionine polypeptides. Peptide aldehydes containing a methional or norleucinal inhibited recombinant peptide deformylase from gram-negative Escherichia coli and gram-positive Bacillus subtilis. The most potent inhibitor was calpeptin, N-CBZ-Leu-norleucinal, which was a competitive inhibitor of the zinc-containing metalloenzymes, E. coli and B. subtilis PDF with Ki values of 26.0 and 55.6 microM, respectively. Cobalt-substituted E. coli and B. subtilis deformylases were also inhibited by these aldehydes with Ki values for calpeptin of 9.5 and 12.4 microM, respectively. Distinct spectral changes were observed upon binding of calpeptin to the Co(II)-deformylases, consistent with the noncovalent binding of the inhibitor rather than the formation of a covalent complex. In contrast, the chelator 1,10-phenanthroline caused the time-dependent inhibition of B. subtilis Co(II)-PDF activity with the loss of the active site metal. The fact that calpeptin was nearly equipotent against deformylases from both gram-negative and gram-positive bacterial sources lends further support to the idea that a single deformylase inhibitor might have broad-spectrum antibacterial activity.  相似文献   

17.
Proteasomes play an important role in protein turnover in living cells. The inhibition of proteasomes affects cell cycle processes and induces apoptosis. Thus, 20 S proteasomal inhibitors are potential tools for the modulation of neoplastic growth. Based on MG132, a potent but nonspecific 20 S proteasome inhibitor, we designed and synthesized 22 compounds and evaluated them for the inhibition of proteasomes. The majority of the synthesized compounds reduced the hydrolysis of LLVY-7-aminomethylcoumarin peptide substrate in cell lysates, some of them drastically. Several compounds displayed inhibitory effects when tested in vitro on isolated 20 S proteasomes, with lowest IC(50) values of 58 nm (chymotrypsin-like activity), 53 nm (trypsin-like activity), and 100 nm (caspase-like activity). Compounds 16, 21, 22, and 28 affected the chymotrypsin-like activity of the beta5 subunit exclusively, whereas compounds 7 and 8 inhibited the beta2 trypsin-like active site selectively. Compounds 13 and 15 inhibited all three proteolytic activities. Compound 15 was shown to interact with the active site by x-ray crystallography. The potential of these novel inhibitors was assessed by cellular tolerance and biological response. HeLa cells tolerated up to 1 microm concentrations of all substances. Intracellular reduction of proteasomal activity and accumulation of polyubiquitinated proteins were observed for compounds 7, 13, 15, 22, 25, 26, 27, and 28 on HeLa cells. Four of these compounds (7, 15, 26, and 28) induced apoptosis in HeLa cells and thus are considered as promising leads for anti-tumor drug development.  相似文献   

18.
The multicatalytic proteinase. Multiple proteolytic activities   总被引:9,自引:0,他引:9  
The multicatalytic proteinase is a high molecular weight nonlysosomal proteinase which has been isolated from a variety of mammalian tissues and has been suggested to contain several distinct catalytic sites. The enzyme degrades protein and peptide substrates and can cleave bonds on the carboxyl side of basic, hydrophobic, and acidic amino acid residues. The three types of activity have been referred to as trypsin-like, chymotrypsin-like, and peptidyl-glutamyl peptide bond hydrolyzing activities, respectively. All of these proteolytic activities are associated with a single band on native polyacrylamide gels. The pH optimum of the proteinase (pH 7.5-9.5) depends on the substrate. Using synthetic peptide substrates it was possible to demonstrate two distinct activities. Trypsin-like activity is inhibited at concentrations of the peptide aldehyde inhibitors leupeptin and antipain or of N-ethylmaleimide which have little or no effect on chymotrypsin-like activity. Results of mixed-substrate experiments also suggest that there are at least two distinct types of catalytic sites. All proteolytic activity is lost following dissociation by urea or by acid treatment. Polyclonal antibodies raised against the intact multicatalytic proteinase precipitate the complex but have little effect on its proteolytic activities.  相似文献   

19.
The conversion of a peptide substrate to a potent inhibitor by chemical modification is a promising approach in the development of inhibitors for protein tyrosine kinases. N-acylation of the synthetic peptide substrate NH2-Glu-Phe-Leu-Tyr-Gly-Val-Phe-Asp-CONH2 (EFLYGVFD) resulted in synergistic inhibition of Src protein kinase activity that was greater than the inhibition by either free peptide and/or free acyl group. Synergistic inhibition was dependent upon the peptide sequence and the length of the acyl chain. The minimum length of the fatty acyl chain to synergistically inhibit Src was a lauryl (C11H23CO) group. N-myristoylated EFLYGVFD (myr-EFLYGVFD) inhibited the phosphorylation of poly E4Y by Src with an apparent Ki of 3 microm, whereas EFLYGVFD and myristic acid inhibited with Ki values of 260 and 35 microm, respectively. The nonacylated EFLYGVFD was a substrate for Src with Km and Vmax values of 100 microm and 400 nmol/min/mg protein, respectively. However, upon myristoylation, the peptide was no longer a substrate for Src. Both the acylated and non-acylated peptides were competitive inhibitors against the substrate poly E4Y. The non-acylated free peptide showed mixed inhibition against ATP while the myristoylated peptide was competitive against ATP. Myristic acid was uncompetitive against poly E4Y and competitive against ATP. Further analysis indicated that the myristoylated peptide acted as a reversible slow-binding inhibitor with two binding sites on Src. The myristoylated 8-mer peptide was reduced in size to a myristoylated 3-mer without losing the affinity or characteristics of a bisubstrate-type inhibitor. The conversion of a classical reversible inhibitor to a reversible slow-binding multisubstrate analogue has improved the potency of inhibition by the peptide.  相似文献   

20.
We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号