首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two structurally related subtypes of oestrogen receptor (ER), known as alpha (ER alpha, NR3A1) and beta (ER beta, NR3A2) have been identified. ER beta mRNA and protein have been detected in a wide range of tissues including the vasculature, bone, and gonads in both males and females, as well as in cancers of the breast and prostate. In many tissues the pattern of expression of ER beta is distinct from that of ER alpha. A number of variant isoforms of the wild type beta receptor (ER beta 1), have been identified. In the human these include: (1). use of alternative start sites within the mRNA leading to translation of either a long (530 amino acids, hER beta 1L) or a truncated form (487aa hER beta 1s); (2). deletion of exons by alternative splicing; (3). formation of several isoforms (ER beta 2-beta 5) due to alternative splicing of exons encoding the carboxy terminus (F domain). We have raised monoclonal antibodies specific for hER beta1 as well as to three of the C terminal isoforms (beta2, beta 4 and beta 5). Using these antibodies we have found that ER beta 2, beta 4 and beta 5 proteins are expressed in nuclei of human tissues including the ovary, placenta, testis and vas deferens.In conclusion, in addition to the differential expression of full length ER alpha and ER beta a number of ER variant isoforms have been identified. The impact of the expression of these isoforms on cell responsiveness to oestrogens may add additional complexity to the ways in which oestrogenic ligands influence cell function.  相似文献   

4.
5.
6.
A fraction of the nuclear estrogen receptor alpha (ERalpha) is localized to the plasma membrane region of 17beta-estradiol (E2) target cells. We previously reported that ERalpha is a palmitoylated protein. To gain insight into the molecular mechanism of ERalpha residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERalpha membrane localization. The cancer cell lines expressing transfected or endogenous human ERalpha (HeLa and HepG2, respectively) or the ERalpha nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERalpha enacts ERalpha association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERalpha palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERalpha palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.  相似文献   

7.
Although the prion protein is abundantly expressed in the CNS, its biological functions remain unclear. To determine the endogenous function of the cellular prion protein (PrP(c)), we compared the effects of oxidative stress and endoplasmic reticulum (ER) stress inducers on apoptotic signaling in PrP(c)-expressing and PrP(ko) (knockout) neural cells. H(2)O(2), brefeldin A (BFA), and tunicamycin (TUN) induced increases in caspase-9 and caspase-3, PKCdelta proteolytic activation, and DNA fragmentation in PrP(c) and PrP(ko) cells. Interestingly, ER stress-induced activation of caspases, PKCdelta, and apoptosis was significantly exacerbated in PrP(c) cells, whereas H(2)O(2)-induced proapoptotic changes were suppressed in PrP(c) compared to PrP(ko) cells. Additionally, caspase-12 and caspase-8 were activated only in the BFA and TUN treatments. Inhibitors of caspase-9, caspase-3, and PKCdelta significantly blocked H(2)O(2)-, BFA-, and TUN-induced apoptosis, whereas the caspase-8 inhibitor attenuated only BFA- and TUN-induced cell death, and the antioxidant MnTBAP blocked only H(2)O(2)-induced apoptosis. Overexpression of the kinase-inactive PKCdelta(K376R) or the cleavage site-resistant PKCdelta(D327A) mutant suppressed both ER and oxidative stress-induced apoptosis. Thus, PrP(c) plays a proapoptotic role during ER stress and an antiapoptotic role during oxidative stress-induced cell death. Together, these results suggest that cellular PrP enhances the susceptibility of neural cells to impairment of protein processing and trafficking, but decreases the vulnerability to oxidative insults, and that PKCdelta is a key downstream mediator of cellular stress-induced neuronal apoptosis.  相似文献   

8.
17beta-estradiol exerts an antiapoptotic action in skeletal muscle cells through extranuclear ERalpha and beta. This protective action, mainly involves a non-genomic mechanism of ERK1/2 and PI3K/Akt activation and BAD phosphorylation. ERbeta plays a major role in the inhibition of apoptosis by 17beta-estradiol at the level of mitochondria, whereas ERalpha and ERbeta mediate the activation of Akt to the same extent, suggesting differential involvement of ER isoforms depending on the step of the apoptotic/survival pathway involved. The myopathies associated to estrogen deficit states may be related to the mechanisms by which estrogen regulates apoptosis.  相似文献   

9.
10.
11.
12.
13.
It has been previously shown in anesthetized pigs that intravenous infusion of 2 microg/h of 17beta-estradiol primarily dilated renal, iliac and coronary circulations, while higher doses of the hormone were required to cause vasodilation also in the mesenteric vascular bed. In the same experimental model, a tonic beta2-adrenoceptor mediated vasodilation, which could be argued to attenuate the vasodilator effect of 17beta-estradiol, has been described. The present study was planned to investigate the role of beta2-adrenergic receptors in the hemodynamic responses of renal and mesenteric vascular beds to 17beta-estradiol. Changes in flow caused by intravenous infusion of 2 microg/h of the hormone at constant heart rate and aortic blood pressure in the left renal and superior mesenteric arteries were assessed using electromagnetic flowmeters. In six pigs, infusion of 17beta-estradiol caused an increase in renal blood flow, which averaged 12.1% of the control values, without affecting mesenteric blood flow. In the same pigs, after hemodynamic variables had returned to the baseline values, blockade of beta2-adrenergic receptors with butoxamine caused an increase in aortic blood pressure and an increase in renal and mesenteric resistance. The subsequent infusion of 17beta-estradiol elicited increases in renal and mesenteric blood flow which respectively averaged 19.6% and 12.8%. Therefore, the present study in anesthetized pigs have shown that the vasodilator responses of the renal and mesenteric circulations to 17beta-estradiol were attenuated and even masked by a tonic beta2-adrenoceptor mediated vasodilation. This indicates that some vasodilator effects elicited by normally used replacement doses of the hormone may not be apparent.  相似文献   

14.
The increased bone resorption observed after estrogen withdrawal is responsible for bone loss and may lead to osteoporosis. The mechanism by which estradiol inhibits bone resorption is known to involve decreased osteoclastogenesis, however, the effect on osteoclast adhesion remains unclear. We examined the in vitro effect of estradiol and raloxifene on human osteoclast differentiation and function. Human peripheral blood mononuclear cells were cultured with M-CSF/RANK-L for 18 days, and we evaluated bone resorption, the expression of the protein and mRNA of the integrins, c-jun and c-fos in the presence or absence of estradiol. In this human model, beta3-integrin expression increased at the mRNA and protein levels during osteoclast differentiation, whereas that of beta5-integrin did not. We found that estradiol and raloxifene directly inhibited bone resorption on bone slices by 50%, and decreased the expression of beta3-integrin mRNA (60%) and protein (20%) in a time-dependent manner. Moreover, the mRNAs of c-fos and c-jun were both diminished by estradiol and raloxifene, particularly in early osteoclasts, but also to a lesser extent in mature cells. These findings suggest that the direct inhibitory action of estradiol on bone resorption may affect human osteoclast differentiation through downregulation of c-fos and c-jun and adhesion through modulation of beta3-integrin.  相似文献   

15.
Cellular response to estrogen is mediated both by estrogen receptor (ER) binding to estrogen response element (ERE) and by non-nuclear actions like activation of signal transducing pathways. The main aims are to study if PI3K/Akt signaling pathway can be activated by 17beta-estradiol (E2) via non-nuclear action and to investigate the relationship of the action of E2 and ER in endometrial cancer cells expressing with different status of ER. The levels of phosphorylated Akt (Ser473) (P-Akt) and total Akt were examined by western blot and Akt kinase activity was measured in cells after stimulation with 1 microM E2 at different time points. Inhibitory role of LY294002 on activation of Akt induced by E2 and its estrogen antagonist, ICI182780 were also tested. P-Akt/Akt was used as a measure of activation of Akt. We found that maximum P-Akt/Akt and Akt kinase activity took place at 30 min in Ishikawa cells and 15 min in HEC-1A cells and the activation persisted for at least 2 h after stimulation with 1 microM E2. The activation of Akt elicited gradually with increasing doses of E2. PI3K inhibitor, LY294002, stopped the activating Akt in a dose-dependent manner and 50 microM LY294002 completely blocked the activation of Akt induced by E2. ICI182780 could block the activation of PI3K/Akt in ER-positive Ishikawa cells but not in HEC-1A cells with poor-expressed ER. This study demonstrated that E2 is able to promptly activate PI3K/Akt signal pathway in Ishikawa cells in an ER-dependent manner and ER-independent in HEC-1A cells. Blockage of PI3K/Akt cascade may become a potential and effective way to control endometrial carcinoma, especially in ER-negative cancers, which show no response to endocrinal therapy.  相似文献   

16.
Cdc25A is a potent tyrosine phosphatase that catalyzes specific dephosphorylation of cyclin/cyclin-dependent kinase (cdk) complexes to regulate G1 to S-phase cell cycle progression. Cdc25A mRNA levels are induced by 17beta-estradiol (E2) in ZR-75 breast cancer cells, and deletion analysis of the cdc25A promoter identified the -151 to -12 region as the minimal E2-responsive sequence. Subsequent mutation/deletion analysis showed that at least three different cis-elements were involved in activation of cdc25A by E2, namely, GC-rich Sp1 binding sites, CCAAT motifs that bind NF-Y, and E2F sites that bind DP/E2F1 proteins. Studies with inhibitors and dominant negative expression plasmids show that E2 activates cdc25A expression through activation of genomic ERalpha/Sp1 and E2F1 and cAMP-dependent activation of NF-YA. Thus, both genomic and non-genomic pathways of estrogen action are involved in induction of cdc25A in breast cancer cells.  相似文献   

17.
18.
19.
In Saccharomyces cerevisiae the nicotinic acid moiety of NAD+ can be synthesized from tryptophan using the kynurenine pathway or incorporated directly using nicotinate phosphoribosyl transferase (NPT1). We have identified the genes that encode the enzymes of the kynurenine pathway and for BNA5 (YLR231c) and BNA6 (YFR047c) confirmed that they encode kynureninase and quinolinate phosphoribosyl transferase respectively. We show that deletion of genes encoding kynurenine pathway enzymes are co-lethal with the Deltanpt1, demonstrating that no other pathway for the synthesis of nicotinic acid exists in S. cerevisiae. Also, we show that under anaerobic conditions S. cerevisiae is a nicotinic acid auxotroph.  相似文献   

20.
The colocalization of integrins alpha 2 beta 1 and alpha 3 beta 1 at intercellular contact sites of keratinocytes in culture and in epidermis suggests that these integrins may mediate intercellular adhesion (ICA). P1B5, an anti-alpha 3 beta 1 mAb previously reported to inhibit keratinocyte adhesion to epiligrin, was also found to induce ICA. Evidence that P1B5-induced ICA was mediated by alpha 2 beta 1 and alpha 3 beta 1 was obtained using both ICA assays and assays with purified, mAb-immobilized integrins. Selective binding of alpha 2 beta 1-coated beads to epidermal cells or plate-bound alpha 3 beta 1 was observed. This binding was inhibited by mAbs to integrin alpha 3, alpha 2, or beta 1 subunits and could be stimulated by P1B5. We also demonstrate a selective and inhibitable interaction between affinity- purified integrins alpha 2 beta 1 and alpha 3 beta 1. Finally, we show that expression of alpha 2 beta 1 by CHO fibroblasts results in the acquisition of collagen and alpha 3 beta 1 binding. Binding to both of these ligands is inhibited by P1H5, an anti-alpha 2 beta 1 specific mAb. Results of these in vitro experiments suggest that integrins alpha 2 beta 1 and alpha 3 beta 1 can interact and may do so to mediate ICA in vivo. Thus, alpha 3 beta 1 mediates keratinocyte adhesion to epiligrin and plays a second role in ICA via alpha 2 beta 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号