首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

2.
The tritium-labeled dipeptide bestim (γ-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by high-temperature solid-state catalytic isotope exchange. It was found that [3H]bestim binds with a high affinity to murine peritoneal macrophages (K d 2.1 ± 0.1 nM) and thymocytes (K d 3.1 ± 0.2 nM), as well as with plasma membranes isolated from these cells (K d 18.6 ± 0.2 and 16.7 ± 0.3 nM, respectively). The specific binding of [3H]bestim to macrophages and thymocytes was inhibited by the unlabeled dipeptide thymogen (L-Glu-L-Trp) (K i 0.9 ± 0.1 and 1.1 ± 0.1 nM, respectively). After treatment with trypsin, macrophages and thymocytes lost the ability to bind [3H]bestim. Bestim in the concentration range of 10?10 to 10?6 M reduced the adenylate cyclase activity in the membranes of murine macrophages and thymocytes.  相似文献   

3.
A tritium-labeled synthetic LKEKK pentapeptide corresponding to the sequences 16–20 of human thymosin-α1 and 131–135 of human interferon-α2 was obtained with a specific activity of 28 Ci/mmol. [3H]LKEKK was found to bind with high affinity (K d 3.7 ± 0.3 nM) to the membranes isolated from epithelial cells of rat small intestinal mucosa. The trypsin treatment of the membranes did not affect the binding, thus supporting the nonprotein nature of the peptide receptor. The binding of the labeled peptide was inhibited by unlabeled thymosin-α1, interferon-α2, and cholera toxin B subunit (K i 4.2 ± 0.4, 3.5 ± 0.3, and 4.7 ± 0.3 nM respectively). The pentapeptide did not affect the adenylate cyclase activity within the concentration range of 1–1000 nM.  相似文献   

4.
We prepared 125I-labeled cholera toxin B subunit (125I-labeled CT-B, specific activity 98 Ci/mmol) and found that its binding to rat IEC-6 intestinal epithelial cells was high-affinity (Kd 1.9 nM). The binding of labeled protein was completely inhibited by unlabeled thymosin-α1 (TM-α1), interferon-α2 (IFN-α2), and synthetic peptide LKEKK, which corresponds to residues 16–20 in TM-α1 and 131–135 in IFN-α2 (Ki 1.2, 0.9, and 1.6 nM, respectively), but was not inhibited by synthetic peptide KKEKL with inverted amino acid sequence (Ki > 10 μM). Thus, TM-α1, IFN-α2, and the LKEKK peptide bind with high affinity and specificity to CT-B receptor on rIEC-6 cells. It was found that CT-B and the LKEKK peptide at concentrations of 10–1000 nM increased nitric oxide production and soluble guanylate cyclase activity in the cells in a dose-dependent manner.  相似文献   

5.
In this work, 125I-labeled cholera toxin B-subunit (CT-B) (specific activity 98 Ci/mmol) was prepared, and its high-affinity binding to human blood T-lymphocytes (K d = 3.3 nM) was determined. The binding of the 125I-labeled CT-B was inhibited by unlabeled interferon-α2 (IFN-α2), thymosin-α1 (TM-α1), and by the synthetic peptide LKEKK, which corresponds to sequences 16-20 of human TM-α1 and 131-135 of IFN-α2 (K i 0.8, 1.2, and 1.6 nM, respectively), but was not inhibited by the unlabeled synthetic peptide KKEKL with inverted sequence (K i > 1 μM). In the concentration range of 10-1000 nM, both CT-B and peptide LKEKK dose-dependently increased the activity of soluble guanylate cyclase (sGC) but did not affect the activity of membrane-bound guanylate cyclase. The KKEKL peptide tested in parallel did not affect sGC activity. Thus, the CT-B and peptide LKEKK binding to a common receptor on the surface of T-lymphocytes leads to an increase in sGC activity.  相似文献   

6.
Hydrolysis and absorption of glycylglycine and glycyl-L-leucine as well as absorption of glycine and leucine were studied in chronic experiments on rats with their isolated small intestine loop. Values of the “true” kinetic constants (with taking into account effect of the preepithelial layer) were determined to be as follows: (1) K t = 46.7 ± 4.0 and 2.15 ± 0.59 mM, J max = 0.74 ± 0.15 and 0.16 ± 0.03 μmol min?1 cm?1 (for transport of free glycine and leucine, respectively); (2) K t = 4.4 ± 0.6 and 4.8 ± 0.9 mM, J max = 0.24 ± 0.02 and 0.23 ± 0.02 μmol min?1 cm?1 (for transport of glycylglycine and glycyl-L-leucine, respectively); (3) K M = 5.4 ± 1.0 and 38.2 ± 4.4 mM, V max = 0.09 ± 0.02 and 0.24 ± 0.07 μmol min?1 cm?1 (for membrane hydrolysis of these dipeptides, respectively). According to our calculations, in the wide range of the initial glycylglycine concentrations (2.5–40 mM) a part of the peptide component in its total absorption accounts for 0.77–0.80. In the case of glycyl-L-leucine a part of the peptide component in the total glycine absorption decreases from 0.89 to 0.84, while in the total leucine absorption—from 0.86 to 0.71, the initial dipeptide concentration rising from 5 to 40 mM. The obtained results show that the peptide component prevails in absorption of the studied dipeptides in the rat small intestine, but its role is much lesser than what many authors believe. In the case of glycyl-L-leucine, the peptide component can achieve saturation in the range of high substrate concentrations, its part decreasing essentially to become compared with absorption of free amino acids formed as a result of the dipeptide membrane hydrolysis.  相似文献   

7.
The synthetic peptide LKEKK corresponding to sequence 16-20 of human thymosin-α1 and 131-135 of human interferon-α2 was labeled with tritium to specific activity 28 Ci/mol. The [3H]LKEKK bound with high affinity (Kd = 3.7 ± 0.3 nM) to donor blood T-lymphocytes. Treatment of cells with trypsin or proteinase K did not abolish [3H]LKEKK binding, suggesting the non-protein nature of the peptide receptor. The binding was inhibited by thymosin-α1, interferon-α2, and cholera toxin B subunit (Ki = 2.0 ± 0.3, 2.2 ± 0.2, and 3.6 ± 0.3 nM, respectively). Using [3H]LKEKK, we demonstrated the existence of a non-protein receptor common for thymosin-α1, interferon-α2, and cholera toxin B-subunit on donor blood T-lymphocytes.  相似文献   

8.
Protease inhibitors control major biological protease activities to maintain physiological homeostasis. Marine bacteria isolated from oligotrophic conditions could be taxonomically distinct, metabolically unique, and offers a wide variety of biochemicals. In the present investigation, marine sediments were screened for the potential bacteria that can produce trypsin inhibitors. A moderate halotolerant novel marine bacterial strain of Oceanimonas sp. BPMS22 was isolated, identified, and characterized. The effect of various process parameters like salt concentration, temperature, and pH was studied on the growth of the bacteria and production of trypsin inhibitor. Further, the trypsin inhibitor was purified to near homogeneity using anion exchange, size exclusion, and affinity chromatography. The purified trypsin inhibitor was found to competitively inhibit trypsin activity with an inhibition coefficient, Ki, of 3.44?±?0.13 μM and second-order association rate constant, kass, of 1.08?×?103 M?1 S?1. The proteinaceous trypsin inhibitor had a molecular weight of approximately 30 kDa. The purified trypsin inhibitor showed anticoagulant activity on the human blood samples.  相似文献   

9.

Objectives

To determine the inhibitory activities of flavonoids against NS2B-NS3 protease of ZIKA virus (ZIKV NS2B-NS3pro) expressed in Escherichia coli BL21 (DE3) and their structure activity relationship.

Results

ZIKV NS2B-NS3pro was expressed in E. coli BL21(DE3) as a 35 kDa protein. It had a K m of 26 µM with the fluorogenic peptide Dabcyl-KTSAVLQSGFRKME-Edan. The purified ZIKV NS2B-NS3pro was used for inhibition and kinetic assays to determine the activities of 22 polyphenol compounds. These polyphenol compounds at 100 µM inhibited the activity of ZIKV NS2B-NS3pro by 6.2–88%. Seven polyphenol compounds had IC50 ranging from 22 ± 0.2 to 112 ± 5.5 µM. Myricetin showed a mixed type inhibitory pattern against ZIKV NS2B-NS3pro protease. Its IC50 value was 22 ± 0.2 µM with a K i value of 8.9 ± 1.9 µM.

Conclusion

The chemical structure of a polyphenol compound and its inhibitory activity against ZIKV NS2B-NS3pro can be explored to develop highly selective inhibitors against ZIKV NS2B-NS3pro.
  相似文献   

10.
11.
Tritium-labeled synthetic fragments of human adrenocorticotropic hormone (ACTH) [3H]ACTH (11–24) and [3H]ACTH (15–18) with a specific activity of 22 and 26 Ci/mmol, respectively, were obtained. It was found that [3H]ACTH-(11–24) binds to membranes of the rat adrenal cortex with high affinity and high specificity (K d 1.8 ± 0.1 nM). Twenty nine fragments of ACTH (11–24) were synthesized, and their ability to inhibit the specific binding of [3H]ACTH (11–24) to adrenocortical membranes was investigated. The shortest active peptide was found to be an ACTH fragment (15–18) (KKRR) (K i 2.3 ± 0.2 nM), whose [3H] labeled derivative binds to rat adrenocortical membranes (K d 2.1 ± 0.1 nM) with a high affinity. The specific binding of [3H]ACTH-(15–18) was inhibited by 100% by unlabeled ACTH (11–24) (K i 2.0 ± 0.1 nM). ACTH (15–18) in the concentration range of 1–1000 nM did not affect the adenylate cyclase activity of adrenocortical membranes and, therefore, is an antagonist of the ACTH receptor.  相似文献   

12.
Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/108 cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4°C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows “Michaelis-Menten” kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with Ki = 0.6 mM and Ki = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.  相似文献   

13.
We have demonstrated the phenomenon of Са2+-induced hyperpolarization in the myocardium of pulmonary veins (PVs) in rats. An increase in cytoplasmic calcium [Са2+]i was shown to shift the resting potential (RP) in the PVs towards more negative values. The compounds inducing an increase in [Са2+]i, such as isoproterenol (10 μM), caffeine (5 mM), and ryanodine (0.01 μM), caused hyperpolarization of 10 ± 2, 9 ± 1.3, and 4.1 ± 2 mV, respectively. The inhibition of calcium-dependent potassium currents (IKCa) did not change RP of PVs under the control conditions and did not affect the Са2+-induced hyperpolarization.  相似文献   

14.
Two glutathione peroxidase isoenzymes were purified from 24-day old embryos of the camel tick Hyalomma dromedarii and designated tick embryo glutathione peroxidase 1 and 2 (TEGPx1 and TEGPx2). The purification procedure involved ammonium sulfate precipitation, as well as ion exchange and gel filtration column chromatography. Glutathione peroxidase isoenzymes subunit molecular mass was determined by SDS-PAGE to be 36 ± 2 kDa and 59 ± 1.5 kDa for TEGPx1 and TEGPx2, respectively. TEGPx1 isoenzyme exhibited a dimeric structure with native molecular mass of 72 kDa while TEGPx2 was a monomeric protein. TEGPx1 and TEGPx2 displayed their pH optima at 7.6 and 8.2. Both isoenzymes cleaved preferentially H2O2 with K m values of 24 and 49 μM. Iodoacetamide competitively inhibited TEGPx1 with K i value of 0.45 mM and 1.10; phenanthroline competitively inhibited TEGPx2 with K i value of 0.12 mM. These results indicate the presence of two different forms of glutathione peroxidase in the developing camel tick embryos. This finding enhances our knowledge and understanding of the physiology of these ectoparasites and will encourage the development of new and untraditional control methods.  相似文献   

15.
A serine protease inhibitor with a molecular mass of 6106±2Da (designated as InhVJ) was isolated from the tropical anemone Radianthus macrodactylus by a combination of liquid chromatography methods. The molecule of InhVJ consists of 57 amino acid residues, has three disulfide bonds, and contains no Met or Trp residues. The N-terminal amino acid sequence of the inhibitor (19 aa residues) was established. It was shown that this fragment has a high degree of homology with the N-terminal amino acid sequences of serine protease inhibitors from other anemone species, reptiles, and mammals. The spatial organization of the inhibitor at the levels of tertiary and secondary structures was studied by the methods of UV and CD spectroscopy. The specific and molar absorption coefficients of InhVJ were determined. The percentage of canonical secondary structure elements in the polypeptide was calculated. The inhibitor has a highly ordered tertiary structure and belongs to mixed α/β-or α + β polypeptides. It was established that InhVJ is highly specific toward trypsin (K i 2.49 × 10?9 M) and α-chymotrypsin (K i 2.17 × 10?8 M) and does not inhibit other proteases, such as thrombin, kallikrein, and papain. The inhibitor InhVJ was assigned to the family of the Kunitz inhibitor according to its physicochemical properties.  相似文献   

16.
Studies of substrate specificity revealed that the D-aminoacylase of Rhodococcus armeniensis AM6.1 strain exhibits absolute stereospecificity to the D-stereoisomers of N-acetyl-amino acids. The enzyme is the most active reacted with N-acetyl-D-methionine, as well as with aromatic and hydrophobic N-acetylamino acids and interacts weakly with the basic substrates. It is practically not reacted with acidic and hydrophilic N-acetyl-amino acids. Michaelis constants (Km) and maximum reaction velocities (Vmax) were calculated, using linear regression analysis, for the following substrates: N-acetyl-D-methionine, N-acetyl-D-alanine, N-acetyl-D-phenylalanine, N-acetyl-D-tyrosine, N-acetyl-D-valine, N-acetyl-D-oxyvaline, N-acetyl- D-leucine. Substrate inhibition of D-aminoacylase was displayed with N-acetyl-D-leucine (Ks = 35.5 ± 28.3 mM) and N-acetyl-DL-tyrosine (Ks = 15.8 ± 4.5 mM). Competitive inhibition of the enzyme with product–acetic acid (Ki = 104.7 ± 21.7 mM, Km = 2.5 ± 0.5 mM, Vmax = 25.1 ± 1.5 U/mg) was observed.  相似文献   

17.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   

18.
The pregnancy-related serine protease HtrA3 plays an important role in human placental development and has recently been recognized as a potential therapeutic target in the treatment of cancer. Previously, a C-terminal pentapeptide FGRWV–COOH was identified to bind at the PDZ domain of HtrA3 with a moderate affinity. Here, based on the high-resolution complex crystal structure of HtrA3 PDZ domain with the pentapeptide ligand we successfully introduced a rationally designed halogen bond to the complex interface by substituting R4-hydrogen atom of the indole moiety of peptide Trp-1 residue with a halogen atom. High-level theoretical calculations suggested that bromine is the best choice that can render strong interaction energy for the halogen bond and can confer high affinity to the PDZ–peptide complex. Fluorescence spectroscopy characterizations revealed that the resulting R4-brominated peptide (K d = 0.15 ± 0.03 μM) exhibited 12-fold affinity improvement relative to its nonhalogenated counterpart (K d = 1.8 ± 0.4 μM). In contrast, the PDZ-binding affinity of R6-brominated peptide (K d = 1.2 ± 0.1 μM), a negative control that was unable to form the halogen bond according to theoretical investigations, did not change substantially as compared to the nonhalogenated peptide.  相似文献   

19.
20.
An extracellular feruloyl esterase from the culture filtrates of the isolated fungus Alternaria tenuissima was successfully purified to apparent homogeneity by anion-exchange and size-exclusion chromatography. Peptide fragments of purified enzyme (designated as AltFAE; molecular weight of 30.3 kDa determined by SDS-PAGE) were identified by mass spectrometry using a NanoLC-ESI-MS/MS system. Michaelis-Menten constants (KM) and catalytic efficiencies (kcat/KM) were determined for typical substrates of feruloyl esterase, and the lowest KM of 50.6 μM (i.e., the highest affinity) and the highest kcat/KM (3.1 × 105 s—1 M–1) were observed for methyl p-coumarate and methyl ferulate, respectively. Not least, AltFAE catalyzed conversion of lignocellulosic material (e.g. wood meal) to release hydroxycinnamic products, i.e. ferulic- and p-coumaric acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号