首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of DNA attached to the chromosome scaffold   总被引:2,自引:0,他引:2       下载免费PDF全文
Two different methods have been described to investigate whether any specific DNA sequences are intimately associated with the metaphase chromosome scaffold. The chromosome scaffold, prepared by dehistonization of chromosomes with 2 M NaCl, is a nonhistone protein complex to which many looped DNA molecules are attached (Laemmli et al., 1977, Cold Spring Harbor Symp. Quant. Biol. 42:351--360). Chromosome scaffold DNA was prepared from dehistonized chicken MSB chromosomes by restriction endonuclease EcoRI digestion followed by removal of the looped DNA by sucrose gradient sedimentation. Alternatively, the scaffold DNA was prepared from micrococcal nuclease-digested intact chromosomes using sucrose gradients containing 2M NaCl. Solution hybridization of the radioactively labeled scaffold DNA with a large excess of total nuclear DNA revealed that, in either case, the scaffold DNA is not a unique sequence class of genomic DNA. Southern-blotting hybridization also showed that the scaffold DNA prepared from EcoRI-digested dehistonized chromosomes was not enriched (or depleted) in the ovalbumin gene sequences. The possibility of a dynamic interaction of protein and DNA in the chromosome scaffold and the possibility that the scaffold is a preparative artifact are discussed.  相似文献   

2.
Silver staining of histone-depleted metaphase chromosomes   总被引:2,自引:0,他引:2  
To investigate a possible relationship between the core-like structures seen in silver-stained chromosomes (prepared by standard cytogenetic methods) and the scaffolds observed in histone-depleted chromosomes, the ability of the scaffold to stain with silver has been examined. Isolated chromosomes were histone-depleted by washing in ammonium acetate or by spreading the chromosomes on an ammonium acetate hypophase. The residual chromosome structures were carbon-platinum shadowed or stained with silver, and then examined by electron microscopy. The results provide clear evidence that the scaffold structure has a high affinity for silver and is therefore similar in its silver-staining potential to the core structure in standard chromosomes. This suggests that the silver core in standard chromosomes may represent the scaffold visualized by histone depletion. The peripherally dispersed DNA radiating from the scaffold also proved to be silver-reactive, and additional experiments demonstrated that purified DNA is capable of binding silver. This result indicates that cytological silver staining is not simply a matter of staining protein, as has previously been thought, but may also involve the staining of chromosomal DNA. In the ammonium acetate-treated and carbon-platinum-shadowed preparations, the scaffold structure was highly variable in its morphology and appeared to be composed of undispersed or incompletely dehistonized chromatin fibers. The silver-stained scaffold reflected this variability. Taken together with other evidence, these findings lead to a questioning of the reality of chromosome core structures.  相似文献   

3.
The structure of histone-depleted metaphase chromosomes   总被引:1,自引:0,他引:1  
We have previously shown that histone-depleted metaphase chromosomes can be isolated by treating purified HeLa chromosomes with dextran sulfate and heparin (Adolph, Cheng and Laemmli, 1977a). The chromosomes form fast-sedimenting complexes which are held together by a few nonhistone proteins.In this paper, we have studied the histone-depleted chromosomes in the electron microscope. Our results show that: the histone-depleted chromosomes consist of a scaffold or core, which has the shape characteristic of a metaphase chromosome, surrounded by a halo of DNA; the halo consists of many loops of DNA, each anchored in the scaffold at its base; most of the DNA exists in loops at least 10–30 μm long (30–90 kilobases).We also show that the same results can be obtained when the histones are removed from the chromosomes with 2 M NaCl instead of dextran sulfate. Moreover, the histone-depleted chromosomes are extraordinarily stable in 2 M NaCI, providing further evidence that they are held together by nonhistone proteins.These results suggest a scaffolding model for metaphase chromosome structure in which a backbone of nonhistone proteins is responsible for the basic shape of metaphase chromosomes, and the scaffold organizes the DNA into loops along its length.  相似文献   

4.
The nuclei and chromosomes were isolated from plasmodia of Physarum polycephalum.The nuclear matrix and chromosome scaffold were obtained after the DNA and most of the proteins were extracted with DNase I and 2 M NaCl.SD-PAGE analyses revealed that the nuclear matrix and chromosome scaffold contained a 37 kD polypeptide which is equivalent to tropomyosin in molecular weight.Immunofluorescence observations upon slide preparations labeled with anti-tropomyosin antibody showed that the nuclear matrix and chromosome scaffold emanated bright fluorescence,suggesting the presence of the antigen in them.Immunodotting results confirmed the presence of tropomyosin in the nuclear matrix and chromosome scaffold.Immunoelectron microscopic observations further demonstrated that tropomyosin was dispersively distributed in the interphase nuclei and metaphase chromosomes.  相似文献   

5.
Sheval' EV  Poliakov VIu 《Ontogenez》2006,37(6):405-418
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200-250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

6.
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200–250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

7.
A scaffold-like structure is observed under the electron microscope when mouse chromosomes are digested with the restriction endonuclease Hae III. This structure, located in the inner part of chromatids, may correspond to those fragments of chromatin loops anchored to the chromosome scaffold and is obtained when chromosomes are treated either in suspension or attached to grids. The width of the structure is correlated with the extent of digestion in chromosomes treated in suspension. Those treated on grids show this structure whenever chromatids do not collapse. These results agree with the model of chromosome organization based on a non-histone protein scaffold.  相似文献   

8.
A protein chromosome scaffold structure has been proposed that acts as a structural framework for attachment of chromosomal DNA. There are several troubling aspects of this concept: (1) such structures have not been seen in many previous thin-section and whole-mount electron microscopy studies of metaphase chromosomes, while they are readily seen in leptotene and zygotene chromosomes; (2) such a structure poses problems for sister chromatid exchanges; and (3) the published photographs show a marked variation in the amount of scaffold in different whole-mount preparations. An alternative explanation is that the scaffold in whole-mount preparations represents incomplete dispersion of the high concentration of chromatin in the center of chromosomes, and when the histones are removed and the DNA dispersed, the remaining nonhistone proteins (NHPs) aggregate to form a chromosome-shaped structure. Two studies were done to determine if the scaffold is real or an artifact: (1) Chinese hamster mitotic cells and isolated chromosomes were examined using two protein stains -EDTA-regressive staining and phosphotungstic acid (PTA) stain. The EDTA-regressive stain showed ribonucleoprotein particles at the periphery of the chromosomes but nothing at the center of the chromosomes. The PTA stain showed the kinetochore plates but no central structures; and (2) isolated chromosomes were partially dispersed to decrease the high concentration of chromatin in the center of the chromosome, then treated with 4 M ammonium acetate or 2 M NaCl to dehistonize them and disperse the DNA. Under these circumstances, no chromosome scaffold was seen. We conclude that the scaffold structure is an artifact resulting from incomplete dispersion of central chromatin and aggregation of NHPs in dehistonized chromosomes.  相似文献   

9.
Chromosomes from poppy (Papaver somniferum L.) and wheat (Triticum monococcum L.) were obtained from cell suspension cultures using a mass isolation procedure. Protein-depleted isolated chromosomes were produced using different modes of extraction (e.g., sodium chloride, dextran sulphate-heparin) and examined by protein electrophoresis as well as light and electron microscopy. The results are discussed as they relate to the reported structure of protein-depleted animal chromosomes. With respect to the scaffold model of mitotic chromosomes we conclude that i) nonhistone proteins seem to play a fundamental role in plant chromosome architecture; ii) DNA is a structural component of protein-depleted chromosomes; iii) centromeric regions may be of structural importance for the higher order organization of chromosomes; iv) the existence of a 2M NaCl resistant scaffold appears not to be a common feature to both plant and animal chromosomes; v) despite the absence of a typical scaffold in plant chromosomes our results suggest that the higher order organization of plant and animal chromosomes is similar if not the same.  相似文献   

10.
ZHAOJIAN  SHAOBOJIN 《Cell research》1995,5(2):155-164
An argentophilic structure is present in the metaphase chromosomes of garlic(Allium sativum),Cytochemical studies indicate that the main component of the structure is non-histone proteins(NHPs).The results of light and electron microscopic observations reveal that the chromosme NHP scaffold is a network which is composed of fibres and granules and distributed throughout the chromosomes.In the NHP network,there are many condensed regions that are connected by redlatively looser regions.The distribution of the condensed regions varies in individual chromosomes.In some of the chromosomes the condensed regions are lognitudinally situsted in the central part of a chromatid while in others these regions appear as coillike transverse bands.At early metaphase.scaffolds of the sister chromatids of a chromosome are linked to each other in the centromeric region,meanwhile,they are connected by scafold materials along the whole length of the chromosome.At late metaphase,however,the connective scaffold materials between the two sister chromatids disappear gradually and the chromatids begin to separate from one another at their ends.but the chromatids are linked together in the centromeric region until anaphase.This connection seems to be related to the special structure of the NHP scaffold formed in the centromeric region.The morphological features and dynamic changes of the chromosome scaffold are discussed.  相似文献   

11.
The outer surface of isolated metaphase chromosomes has been investigated by a method of thermally activated tritium labelling. We show that both chromosomal proteins and DNA are tritium-labelled. Fractionation of the chromosomal proteins reveals that scaffold proteins are the most labelled in condensed and EDTA-decondensed chromosomes. Exposition of some scaffold proteins on the outer surface of metaphase chromosomes is suggested.  相似文献   

12.
Architecture of metaphase chromosomes and chromosome scaffolds   总被引:19,自引:11,他引:8       下载免费PDF全文
We have developed procedures for depositing intact mitotic chromosomes and isolated residual scaffolds on electron microscope grids at controlled and reproducible levels of compaction. The chromosomes were isolated using a recently developed aqueous method. Our study has addressed two different aspects of chromosome structure. First, we present a method for improved visualization of radial chromatin loops in undisrupted mitotic chromosomes. Second, we have visualized a nonhistone protein residual scaffold isolated from nuclease-digested chromosomes under conditions of low salt protein extraction. These scaffolds, which have an extremely simple protein composition, are the size of chromosomes, are fibrous in nature, and are found to retain differentiated regions that appear to derive from the kinetochores and the chromatid axis. When our standard preparation conditions were used, the scaffold appearance was found to be very reproducible. If the ionic conditions were varied, however, the scaffold appearance underwent dramatic changes. In the presence of millimolar concentrations of Mg++ or high concentrations of NaCl, the fibrous scaffold protein network was observed to undergo a lateral aggregation or assembly into a coarse meshlike structure. The alteration of scaffold structure was apparently reversible. This observation is consistent with a model in which the scaffolding network plays a dynamic role in chromosome condensation at mitosis.  相似文献   

13.
Metaphase chromosome structure. Involvement of topoisomerase II   总被引:82,自引:0,他引:82  
SCI is a prominent, 170,000 Mr, non-histone protein of HeLa metaphase chromosomes. This protein binds DNA and was previously identified as one of the major structural components of the residual scaffold structure obtained by differential protein extraction from isolated chromosomes. The metaphase scaffold maintains chromosomal DNA in an organized, looped conformation. We have prepared a polyclonal antibody against the SC1 protein. Immunolocalization studies by both fluorescence and electron microscopy allowed identification of the scaffold structure in gently expanded chromosomes. The micrographs show an immunopositive reaction going through the kinetochore along a central, axial region that extends the length of each chromatid. Some micrographs of histone-depleted chromosomes provide evidence of the substructural organization of the scaffold; the scaffold appears to consist of an assembly of foci, which in places form a zig-zag or coiled arrangement. We present several lines of evidence that establish the identity of SC1 as topoisomerase II. Considering the enzymic nature of this protein, it is remarkable that it represents 1% to 2% of the total mitotic chromosomal protein. About 60% to 80% of topoisomerase II partitions into the scaffold structure as prepared from isolated chromosomes, and we find approximately three copies per average 70,000-base loop. This supports the proposed structural role of the scaffold in the organization of the mitotic chromosome. The dual enzymic and apparent structural function of topoisomerase II (SC1) and its location at or near the base of chromatin loops allows speculation as to its involvement in the long-range control of chromatin structure.  相似文献   

14.
How DNA is folded into chromosomes is unknown. Mitotic chromosome banding shows reproducibility in longitudinal compaction at a resolution of several megabase pairs, but it is less clear whether DNA sequences are targeted laterally to specific locations. The in vitro chromosome assembly of prokaryotic DNA suggests that there is a lack of sequence requirements for chromosome condensation, implying an absence of DNA targeting. Protein extraction experiments indicate, however, that specific DNA sequences may bind to a chromosome scaffold. Chromosome banding patterns, using dyes with differential sequence specificity, have been interpreted to result from the alignment of AT-rich sequences in a partially helically folded chromosome scaffold. But fluorescence in situ hybridization experiments, perhaps owing to technical limitations, have shown at best only slight deviation from a random, lateral sequence distribution. Here we show that there is highly reproducible targeting of specific chromosome segments to the metaphase chromatid axis, but that these segments localize to the periphery of prophase and telophase chromosomes. Unfolding intermediates during anaphase and telophase suggest that sequence repositioning occurs through the global uncoiling of an underlying chromatid structure.  相似文献   

15.
小麦中期染色体银染蛋白的分析   总被引:1,自引:0,他引:1  
对小麦中期染色体中银染蛋白的大小、形状和分布频率进行图像分析,看到:染色体顺的银染蛋白以颗粒状的形式存在,其大小不同,分布不均匀,数量差异也较大;从形状来看,大的银粒为点状,小的银粒有的为点状,有的实际为短纤维状,结果表明:染色体骨架在小麦中是真实存在的,骨架蛋白以颗粒和纤维状的形式分布于整个染色体中。  相似文献   

16.
Cell cycle variations in the phosphorylation of chromatin-associated nonhistones were determined. Cells were radiolabeled with [32P]orthophosphate and chromatin was obtained by mild digestion of nuclei with micrococcal nuclease. The experiments were performed in the presence of a substrate inhibitor of alkaline phosphatase, beta-glycerophosphate. The results show that, while similar molecular weight species of phosphorylated nonhistones are associated with interphase chromatin through the HeLa cell cycle, the incorporation (32P cpm/micrograms of protein) profiles of selected major phosphononhistones show substantial changes. The most prominent peaks of specific radioactivity occur in the DNA synthesis phase (S phase). The phosphorylation states of the proteins of isolated metaphase chromosomes were also determined. Nonhistone proteins of isolated metaphase chromosomes are strikingly dephosphorylated, especially in comparison to histone H1. The phosphorylation of the major phosphononhistone of chromatin, which has a molecular weight of 55,000, was further characterized by techniques that included one-dimensional peptide mapping in sodium dodecyl sulfate-polyacrylamide gels and nonequilibrium pH gradient slab gel electrophoresis. Phosphoproteins are also components of the nuclear scaffold, and cell cycle variations in these proteins were investigated. The primary phosphorylated species has a molecular weight of 119,000. As with chromatin-associated nonhistones, this nuclear scaffold protein shows substantial incorporation of 32P in S phase, and a high level of incorporation also occurs close to mitosis.  相似文献   

17.
Using electron microscopy (EM), we have examined three structural domains of the mitotic chromosome scaffold of mouse erythroleukemia (MEL) Friend cells with different morphologic organization: centromeric, intermediate, and telomeric. The intermediate, most extensive, domain exhibited a specific fibrogranular structure representing tightly packed granular bodies with diameters between 20 and 60 nm. The chromosome scaffold contained three main components: proteins (81%), RNA (12%), and DNA (7%). The residual DNA extracted from the scaffold represented short fragments, 300 bp on average, belonging to the class of tandemly arranged repetitive DNA. In situ hybridization experiments confirmed its typical centromeric location. Scaffold RNA represented three fractions: a major RNA fraction with an electrophoretic mobility corresponding to that of 5S RNA and two minor fractions with electrophoretic mobilities somewhat lower than that of 18S RNA. Scaffold RNA was localized mainly in the centromeric region. We show that the newly synthesized protein component of the chromosome scaffolds migrates slowly to the chromosomes, reaching a maximum specific radioactivity 12 h from the onset of the chase period.  相似文献   

18.
19.
It is well known that there is a strong influence of fixation, i.e., acetic methanol versus formaldehyde, on the chromosome morphology at stages of the first meiotic division. In this study the influence of both these types of fixation on the morphology of mitotic chromosomes was examined in human lymphocytes. After methanol-acetic acid (3:1) fixation, the chromosomes show the "classical" condensed shape in which it is not always possible to recognize the two sister chromatids. These chromosomes are accessible to the conventional G-, R-, and C-banding techniques. After formaldehyde fixation at a relatively high pH, the chromosomes are thinner and longer (two to six times) when compared with chromosomes following methanol-acetic acid fixation. They show a scaffold-like morphology, sometimes with a halo of thin material around it. In all cases the two sister chromatids could be recognized. This chromosome structure could be easily stained with silver, Giemsa, 4,6-diamino-2-phenyl-indole (DAPI), and fluorescein isocyanate isomere 1 (FITC). The results obtained following these stainings gave no indication to any specific chemical composition of a probable central scaffold. The scaffold-like structures were not accessible to G-, R-, or C-banding techniques. The only effect observed following these banding techniques was the disappearance of the halo of thin material around the central scaffold-like structure.  相似文献   

20.
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号