首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken gizzard tropomyosin, like rabbit skeletal tropomyosin, inhibits and activates skeletal actomyosin subfragment 1 ATPase at low and high [subfragment 1], respectively, showing that both smooth and skeletal tropomyosin qualitatively produce similar cooperative effects on activity. For gizzard tropomyosin, however, the extent of the inhibition was less, and the activation curve rose more sharply at lower [subfragment 1]. In terms of a two-state cooperative activity model for the actin-tropomyosin filament (Hill, T. L., Eisenberg, E., and Chalovich, J. (1981) Biophys. J. 35, 99-112), these results qualitatively suggest that, for the gizzard tropomyosin system, more units are initially in the active state (in the absence of subfragment 1) and that the switching of units to the active state is more cooperative. The greater cooperativity indicated for the gizzard system may be a consequence of the greater rigidity of gizzard tropomyosin indicated from conformational studies.  相似文献   

2.
Caldesmon, calmodulin and tropomyosin interactions   总被引:1,自引:0,他引:1  
Binary complex interactions between caldesmon and tropomyosin, and calmodulin and tropomyosin, and ternary complex interaction involving the three proteins were studied using viscosity, electron microscopy, fluorescence and affinity chromatography techniques. In 10 mM NaCl, caldesmon decreased the viscosity of chicken gizzard tropomyosin by 7-8 fold with a concomitant increase in turbidity (A330nm). Electron micrographs showed spindle-shaped particles in the tropomyosin-caldesmon samples. These results suggest side-by-side aggregation of tropomyosin polymers induced by caldesmon. Binding studies in 10 mM NaCl between caldesmon and chicken gizzard tropomyosin labelled with the fluorescent probe N-(1-anilinonaphthyl-4)maleimide (ANM) gave association constants from 5.3.10(6) to 7.9.10(6) M-1 and stoichiometry from 1.0 to 1.4 tropomyosin per caldesmon. Similar binding was observed for rabbit cardiac tropomyosin and caldesmon. Removal of 18 and 11 residues from the COOH ends of the gizzard and cardiac tropomyosin by carboxypeptidase A, respectively, had no significant effect on their binding to caldesmon. In the presence of Ca2+, chicken gizzard tropomyosin bound to a calmodulin-Sepharose-4B column and was eluted with a salt concentration of 140 mM. This interaction was weakened in the absence of Ca2+, and the bound tropomyosin was eluted by 65 mM KCl. ANM-labelled tropomyosin bound calmodulin in the presence of Ca2+ with a binding constant of 3.5.10(6) M-1 and a binding stoichiometry of 1 to 1.4 tropomyosin per calmodulin. In 10 mM NaCl, calmodulin reduced the specific viscosity of chicken gizzard tropomyosin in the presence of Ca2+ by 5 fold, while a 1.5-fold reduction in viscosity was observed in the absence of Ca2+. In either case, no significant increase in turbidity was observed suggesting that calmodulin reduced head-to-tail polymerization of tropomyosin. The interaction of caldesmon with the calmodulin-ANM-tropomyosin complex in the presence and absence of Ca2+ was also examined. The result is consistent with a model that in the absence of Ca2+, calmodulin binds weakly to either caldesmon or tropomyosin and has little effect on the tropomyosin-caldesmon interaction; whereas, Ca2(+)-calmodulin interacts with caldesmon and reduces its affinity to tropomyosin.  相似文献   

3.
Changes in F-actin conformation in myosin-free single ghost fibers of rabbit skeletal muscle induced by the binding of skeletal and gizzard tropomyosin to F-actin were studied by measuring intrinsic tryptophan-polarized fluorescence of F-actin. It was found that skeletal and gizzard tropomyosin binding to F-actin initiate different conformational changes in actin filaments. Skeletal tropomyosin inhibits, while gizzard tropomyosin activates the Mg2+-ATPase activity of skeletal actomyosin. It is supposed that in muscle fibers tropomyosin modulates the ATPase activity of actomyosin via conformational changes in F-actin.  相似文献   

4.
Chicken gizzard tropomyosin was digested with carboxypeptidase A at the weight ratios of enzyme to substrate 1:200 and 1:50. Removal of about 16 C-terminal amino acid residues per tropomyosin molecule, at lower enzyme concentration, caused reversion of the effect on skeletal actomyosin ATPase activity from activating to inhibiting without an influence on polymerizability and actin-binding ability. Removal of about 26 C-terminal amino acid residues per molecule, at higher enzyme concentration, resulted in loss of polymerizability and actin binding ability. Digestion of gizzard tropomyosin with carboxypeptidase A has no dramatic effect on its binding to troponin T. The results show that not only the existence of head-to-tail overlapping regions but also their length is important for the functional properties of chicken gizzard tropomyosin.  相似文献   

5.
The gizzard tropomyosin molecule is composed of two subunits at 1:1 molar ratio. Possible composites of the tropomyosin molecule are two kinds of homodimer (one for each subunit), a heterodimer of two subunits, or a mixture of heterodimer and homodimer(s). We tried to evaluate the native subunit composition of gizzard tropomyosin by cross-linking experiments and immunological methods using specific antibodies to each subunit. For the cross-linking experiment we used dimethyl suberimidate, an amino group-specific cross-linker, in the presence of dithiothreitol to avoid artificial oxidative intersubunit cross-linking. When gizzard tropomyosin was cross-linked, it generated several products which might correspond to dimers formed by intersubunit cross-linkage. When the reaction was carried out for a long time, non-cross-linked subunits completely disappeared and two or three major cross-linked products arose. All of these cross-linked products were recognized by both of the specific antibodies to each subunit. These results indicated that the predominant part, if not all, of gizzard tropomyosin is present as heterodimer.  相似文献   

6.
E Kardami  M Y Fiszman 《FEBS letters》1983,163(2):250-256
Tropomyosins can be classified as belonging to an alpha-like or a beta-like family depending on the absence or presence, respectively in their protease-V8 digestion pattern of two peptides with an apparent molecular mass of 21 kDa. Chicken cardiac tropomyosin and the 43 kDa component from gizzard tropomyosin are accordingly classified as alpha-like tropomyosins, while the 33 kDa gizzard tropomyosin component is a beta-like tropomyosin. The 21 kDa peptides have an overall charge which is more positive than that of the intact tropomyosin or any other tropomyosin peptide and probably contain the -NH2 half of the molecule.  相似文献   

7.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

8.
An inhibitory protein for Mg2+-activated actomyosin ATPase from rabbit skeletal muscle was prepared from frozen chicken gizzard and purified by DEAE-Sephadex chromatography and gel filtration. 2. The inhibition by this protein was released by the addition of skeletal muscle troponin C and was independent of gizzard tropomyosin. 3. Localization of the inhibitory protein in gizzard muscle tissue and gizzard thin filaments was demonstrated by immunohistological techniques and immunodiffusion tests.  相似文献   

9.
A simple method for preparing actin from chicken gizzard was described. This method takes advantage of a property of gizzard tropomyosin, that is, that it does not form Mg paracrystals readily.  相似文献   

10.
alpha-Actinin purified from chicken gizzard smooth muscle was characterized in comparison with alpha-actinins from chicken striated muscles, or fast-skeletal muscle, slow-skeletal muscle, and cardiac muscle. The gizzard alpha-actinin molecule consisted of two apparently identical subunits with a molecular weight of 100,000 on SDS-polyacrylamide gel electrophoresis, as do striated-muscle alpha-actinins. Its isoelectric points in the presence of urea were similar to the striated-muscle counterparts. Despite these similarities, distinctive amino acid sequences between smooth-muscle alpha-actinin and striated-muscle alpha-actinins were revealed by peptide mapping using limited proteolysis in SDS. Gizzard alpha-actinin was immunologically distinguished from striated-muscle alpha-actinins. Gizzard alpha-actinin formed bundles of gizzard F-actin as well as of skeletal-muscle F-actin, but could not form any cross-bridges between adjacent actin filaments under conditions where skeletal-muscle alpha-actinin could. Temperature-dependent competition between gizzard alpha-actinin and tropomyosin on binding to gizzard thin filaments was demonstrated by electron microscopic observations. Gizzard alpha-actinin promoted Mg2+-ATPase activity of reconstituted skeletal actomyosin, gizzard acto-skeletal myosin, and gizzard actomyosin. This promoting effect was depressed by the addition of gizzard tropomyosin. These findings imply that, despite structural differences between gizzard and striated-muscle alpha-actinin molecules, they function similarly in vitro, and that gizzard alpha-actinin can interact not only with smooth-muscle actin (gamma- and beta-actin) but also with skeletal-muscle actin (alpha-actin).  相似文献   

11.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   

12.
Chicken gizzard myosin was incubated with ATP and/or "native" tropomyosin (NTM) of gizzard muscle in the presence or absence of calcium ions. One of the two light chains of the myosin molecule was phosphorylated in the presence of Ca, but not in its absence. The phosphorylated gizzard myosin was dephosphorylated by a crude preparation of myosin light-chain phosphatase obtained from gizzard muscle. In a superprecipitation test in the presence of EGTA, actomyosin reconstituted from dephosphorylated gizzard myosin did not superprecipitate, whereas actomyosin reconstituted from phosphorylated gizzard myosin showed superprecipitation activity which was inhibited by skeletal NTM and reactivated by Ca.  相似文献   

13.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

14.
Evidence for interaction between smooth muscle tropomyosin and caldesmon   总被引:4,自引:0,他引:4  
P Graceffa 《FEBS letters》1987,218(1):139-142
The viscosity of chicken gizzard smooth muscle tropomyosin is enhanced 4.7-fold in the absence of salt and 1.43-fold in 0.1 M salt by the presence of stoichiometric amounts of gizzard caldesmon, indicating that the two proteins interact under these conditions. Since the thin filament regulation of smooth muscle contraction by caldesmon requires the presence of tropomyosin, these results suggest that the direct interaction between tropomyosin and caldesmon on the thin filament plays a role in this regulation.  相似文献   

15.
Potentiation of actomyosin ATPase activity by filamin   总被引:2,自引:0,他引:2  
It was found that thin filaments from chicken gizzard muscle activate skeletal muscle myosin Mg2+-ATPase to a greater extent than does the complex of chicken gizzard actin and tropomyosin. The protein factor responsible for this additional activation has been now identified as the high Mr actin binding protein, filamin.  相似文献   

16.
H Miyata  S Chacko 《Biochemistry》1986,25(9):2725-2729
The binding of gizzard tropomyosin to gizzard F-actin is highly dependent on free Mg2+ concentration. At 2 mM free Mg2+, a concentration at which actin-activated ATPase activity was shown to be Ca2+ sensitive, a molar ratio of 1:3 (tropomyosin:actin monomer) is required to saturate the F-actin with tropomyosin to the stoichiometric ratio of 1 mol of tropomyosin to 7 mol of actin monomer. Increasing the Mg2+ could decrease the amount of tropomyosin required for saturating the F-actin filament to the stoichiometric level. Analysis of the binding of smooth muscle tropomyosin to smooth muscle actin by the use of Scatchard plots indicates that the binding exhibits strong positive cooperativity at all Mg2+ concentrations. Calcium has no effect on the binding of tropomyosin to actin, irrespective of the free Mg2+ concentration. However, maximal activation of the smooth muscle actomyosin ATPase in low free Mg2+ requires the presence of Ca2+ and stoichiometric binding of tropomyosin to actin. The lack of effect of Ca2+ on the binding of tropomyosin to actin shows that the activation of actomyosin ATPase by Ca2+ in the presence of tropomyosin is not due to a calcium-mediated binding of tropomyosin to actin.  相似文献   

17.
Caldesmon-binding sites on tropomyosin   总被引:3,自引:0,他引:3  
The interaction of chicken gizzard caldesmon with fragments of tropomyosin, generated by chemical, enzymatic, and mutational means, was studied to determine the caldesmon-binding site(s) on tropomyosin. Binding was examined by fluorescence spectroscopy and affinity chromatography. Removal of residues 1-141 and 228-284, respectively, from the NH2 and COOH ends of tropomyosin did not affect its binding to caldesmon significantly, indicating that the major, caldesmon-binding region lies between residues 142-227. The Escherichia coli produced chicken gizzard beta-tropomyosin mutant, CSM-beta (1/8/12-227), bound caldesmon about 2-fold stronger than a similar mutant of residues 8-200. This further focused the primary caldesmon-binding site to residues 201-227. Cleavage of tropomyosin at CYS-190 weakened markedly the binding of the two resulting fragments, residues 1-189 and 190-284, to caldesmon suggesting the requirement for the integrity of the caldesmon-binding region between residues 142227 of tropomyosin for strong interaction with caldesmon. Based on data from this study and others, we have proposed models for the interaction of tropomyosin with caldesmon in vitro, as well as the possible arrangement of the smooth muscle thin filament proteins in vivo.  相似文献   

18.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

19.
Benjamin Geiger 《Cell》1979,18(1):193-205
A protein with a molecular weight of 130,000 (130K protein) was extracted from chicken gizzard and purified to homogeneity by ammonium sulfate fractionation and ion-exchange chromatography. Antibodies prepared against the pure protein were used for its immunochemical characterization and immunofluorescent visualization in cultured chicken cells. Both peptide mapping and immunochemical analysis indicated that the 130K protein is not related either structurally or antigenically to other mechanochemical proteins, including α-actinin, actin, myosin, tropomyosin, filamin and tubulin. Immunofluorescent labeling of different cultured embryonic chicken cells (from skin, heart and gizzard) indicated that the label was predominantly organized in intracellular plaques at the bottom of the cells and in some areas of cell-cell contact. Immunoprecipitation of the 130K protein from biosynthetically 35S-methionine-labeled cultured cells, using the pure antibodies and Staphylococcus aureus, resulted in the specific isolation of a single labeled electrophoretic band indistinguishable from the chicken gizzard 130K protein. The 130K protein-rich plaques were found, by interference-reflection microscopy, to coincide with cell substrate adhesion plaques. Double immunofluorescent labeling for the 130K protein and other cytoskeletal proteins (actin, α-actinin and tropomyosin) indicated that the 130K protein-rich areas are localized at the termini of stress fibers. α-Actinin was found in close association with the 130K protein, while tropomyosin was usually excluded from those areas.  相似文献   

20.
Interaction between chicken gizzard caldesmon and tropomyosin   总被引:1,自引:0,他引:1  
Chicken gizzard muscle caldesmon has been examined for ability to interact with tropomyosin from chicken gizzard muscle by using fluorescence enhancement of tropomyosin labeled with dansyl chloride (DNS) and affinity chromatography. The binding of caldesmon to tropomyosin was regulated by Ca2+ and calmodulin, i.e., at low ionic strength most of the caldesmon bound to tropomyosin-Sepharose 4B was co-eluted by adding calmodulin only in the presence of Ca2+, but not in its absence. This regulation by Ca2+ and calmodulin was also suggested by fluorescence measurements. Actin- and calmodulin-binding sites on the caldesmon molecule were located in the 38K fragment (Fujii, T., Imai, M., Rosenfeld, G.C., & Bryan, J. (1987) J. Biol. Chem. 262, 2757-2763). When 38K-enriched fraction was applied to the tropomyosin-Sepharose, the 38K fragment was retained by the column and could be eluted by adding Ca2+ and calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号