首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In human endothelial cell conditioned medium a fast-acting inhibitor of tissue-type plasminogen activator and urokinase has been detected. Moreover, an inactive inhibitor of these plasminogen activators is present, that can be activated by denaturing agents such as sodium dodecyl sulphate (SDS). The mutual relationship between these inhibitors was studied. The fast-acting plasminogen activator inhibitor from human endothelial cell conditioned medium was purified in a complex with tissue-type plasminogen activator by immune adsorption, using an immobilized anti-tissue-type plasminogen activator antibody. With the complex as an antigen, specific antibodies were raised against this inhibitor in rabbits. The antiserum immunoreacted with both the inactive and the fast-acting plasminogen activator inhibitor. Endothelial cell conditioned medium (containing the inactive plasminogen activator inhibitor) was treated with SDS and the inhibitory activity that emerged was purified. The SDS-generated product formed complexes with tissue-type plasminogen activator with the same molecular mass as those formed with the fast-acting inhibitor. Moreover, the inhibitory activity generated by SDS treatment showed the same kinetic behaviour with tissue-type plasminogen activator as did the fast-acting inhibitor. These data show that the fast-acting and the inactive plasminogen activator inhibitor are immunologically and functionally related to each other, and probably represent different molecular forms of the same protein.  相似文献   

2.
We report the production, purification, characterization, and partial amino acid sequence of a plasminogen inhibitor (PA-I). The starting material is culture fluid from phorbol myristate 13-acetate-treated U-937 cells and the isolation steps consist of preparative isoelectric focusing followed by affinity chromatography on Cibacron Blue-Sepharose. PA-I migrates as a closely spaced doublet of 47-kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and forms covalent complexes with urokinase and two-chain tissue-type plasminogen activator, displaying second order rate constants of 0.9 X 10(6) M-1 s-1 and 0.2 X 10(6) M-1 s-1, respectively. Upon treatment with 1 M NH4OH, the covalent complexes were hydrolyzed, yielding a 35-kDa inhibitor fragment. A partial amino acid sequence of PA-I showed that it belongs to the antithrombin III family of inhibitors. PA-I is immunologically related to a PA-inhibitor from human placenta. mRNA from phorbol myristate 13-acetate-treated U-937 cells directed, in a rabbit reticulocyte derived cell-free system, the biosynthesis of only one 47-kDa protein that could be immunoprecipitated with anti-PA-I IgG, indicating that the two molecular forms of PA-I are the products of post-translational processing.  相似文献   

3.
A plasminogen activator inhibitor (PAI) was purified from bovine endothelial cell conditioned medium by a simple procedure in the absence of protein denaturant. The yield was 2.2 mg from 1.61 conditioned medium in a typical experiment. The purified inhibitor showed a single band on sodium dodecyl sulfate/polyacrylamide gel electrophoresis and reverse fibrin autography with an apparent molecular mass of 45 kDa. The amino-terminal 40-amino-acid sequence was determined and found to be 70% similar to the reported corresponding sequence of human PAI-1. The amino acid composition also revealed a close relationship between bovine PAI and human PAI-1. The purified PAI was substantially inactive (570 U/mg) but it could be activated by treatment with protein denaturants such as 1% SDS (1.8 X 10(5) U/mg) and 4 M guanidine-HCl (1.5 X 10(5) U/mg). A more effective activation of this latent PAI was achieved by heat treatment at 100 degrees C for 2.5 min, generating the specific activity of 1.0 X 10(6) U/mg. The heat-activated PAI lost its activity during incubation at 56 degrees C for 30 min, but repeated heat at 100 degrees C for 2.5 min could regenerate about 70% of the initial activity. Treatment at 37 degrees C, 56 degrees C and 80 degrees C, however, failed to activate the latent PAI at all. These findings suggest that the buried reactive site of the latent PAI is exposed as a result of a heat-induced, specific conformational change, but tends to be masked again during renaturation under mild conditions, i.e. the PAI protein takes on preferentially a latent form.  相似文献   

4.
A melanoma cell line (Bowes) was found to produce plasminogen activator even on its growing phase, and the rate of plasminogen activator production was rather constant. The production of plasminogen activator was proportional to the cell number. Morphologically, no specific features for plasminogen activator production were seen. Plasminogen activator was observed in the lysate of this cell line only when the cell number was large. The extracellular plasminogen activator activity was higher than the intracellular plasminogen activator activity, suggesting the existence of a secretion mechanism for the plasminogen activator.  相似文献   

5.
Hepatic parenchymal cells contribute to the clearance of circulating tissue-type plasminogen activator (t-PA) in vivo. The hepatocyte extracellular matrix is interposed between the endothelial-lined sinusoids and the parenchymal cell surface and thus may influence t-PA clearance. To test this hypothesis, the well differentiated human hepatoma cell line HepG2 was used to characterize the role of extracellular matrix in t-PA clearance in vitro. Previous studies with these cells demonstrated their capacity for specific catabolism of t-PA in a system modulated by plasminogen activator inhibitor type 1 (PAI-1). In the present study the extracellular matrix growth substratum of HepG2 cells is shown to contain active PAI-1. PAI-1 is distributed in a punctuate pattern throughout the substratum. Components of the substratum confer stability to active PAI-1 for intervals of at least 24 h. Exposing substratum to 125I-t-PA leads rapidly to the formation and release of a sodium dodecyl sulfate-stable 95-kDa 125I-t-PA.PAI-1 complex. In comparison, cell monolayers have the additional capacity for specific binding of the complex. However, PAI-1 is not detected at the surface of HepG2 cells in suspension, suggesting that 125I-t-PA.PAI-1 complexes form in substratum and subsequently bind to cells. Specific binding of performed 125I-t-PA.PAI-1, but not 125I-t-PA, was demonstrated for HepG2 cells in suspension. These results suggest that components of extracellular matrix participate in the clearance of t-PA by hepatocytes.  相似文献   

6.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

7.
Tissue plasminogen activator-inhibitor complexes were purified from the conditioned medium of human umbilical vein endothelial cells by affinity chromatography followed by gel filtration. It was found that a single complex was isolated which can exist in two distinct interconvertible conformations. These may be separated by electrophoresis into a form with a 105,000 apparent molecular weight and a form with an 88,000 apparent molecular weight. The particular conformation which predominates may be altered by changing the pH at which preparations are incubated or by including dithiothreitol in incubation buffers. Plasminogen activator enzymatic activity may be partially recovered from purified complexes by incubation in the presence of fibrin. Incubation in 1.5 M NH4OH results in the dissociation of the complex into two major polypeptides of 67 and 40 kilodaltons (kDa). The 40-kDa protein was isolated by gel filtration high-pressure liquid chromatography. N-Terminal amino acid analysis of this protein revealed three distinct sequences. Two of these were nearly identical and matched the N-terminal sequence recently reported for the native plasminogen activator inhibitor from endothelial cells. The third sequence exactly matched an internal portion of the same protein. The results suggest that the internal sequence is located at the site where the inhibitor is cleaved by tissue plasminogen activator.  相似文献   

8.
9.
An established cell line (OC-1) was obtained from human ovarian tissue, which yielded a high concentration of plasminogen activator (PA) in the culture medium. The PA (OC-1-PA) produced by the cell line was purified and compared with urokinase (UK), proform of UK (pro-UK), and tissue-type PA (t-PA) purified from human melanoma cells (Bowes). OC-1-PA was purified by Zn chelate-Sepharose affinity chromatography followed by high-performance liquid chromatography with a Zn chelate-5PW column and with a p-amino-benzamidine-5PW column, giving a yield of 58.3% and a purification factor of 15,439. This purified material revealed a single band of Mr 55,000 on sodium dodecylsulfate polyacrylamide gel electrophoresis in the presence or absence of reducing agents. Electrophoretic enzymography demonstrated that the Mr 55,000 protein band had a plasminogen-dependent fibrinolytic activity. Treatment with plasmin did not change the Mr even in the presence of reducing agents. These results suggest that OC-1-PA has a single-chain structure protected from protease degradation, which is completely different from UK. The activator had higher affinities for lysine and fibrin than those of UK or pro-UK. An immunological study demonstrated that OC-1-PA cross-reacted with anti-UK IgG but not with anti-t-PA IgG. All these findings indicate that OC-1-PA belongs immunologically to the UK type, but its structure differs from that of UK.  相似文献   

10.
The rapidly acting inhibitor of plasminogen activators, PAI-1, was produced intracellularly in Saccharomyces cerevisiae by using the ADH2 promoter to drive the expression of the human PAI-1 cDNA. Approximately 8 mg of human PAI-1 was produced per liter of confluent yeast culture. A purification scheme which resulted in 20% recovery of isolated PAI-1 from the broken yeast cell homogenate was devised. Yeast-derived human PAI-1 differs from endothelial-type PAI-1 isolated from HT1080 fibrosarcoma cells in that the recombinant inhibitor does not contain carbohydrate side chains. Nevertheless, the activity and other functional attributes of yeast-derived PAI-1 are similar to those exhibited by HT1080 fibrosarcoma cell-derived PAI-1. Hence, this study demonstrates that expression of human PAI-1 in yeast is a viable strategy for the production of ample quantities of this key modulator of plasminogen activator-mediated proteolysis.  相似文献   

11.
Seeds of the legume Erythrina latissima contain a 20,000-dalton, single-chain protein that has been shown to inhibit the amidolytic activity of trypsin and tissue plasminogen activator. It had no comparable effect on urokinase. IC50 values of 1.1 X 10(-7) M for tissue plasminogen activator and 6.9 X 10(-10) M for trypsin were determined by titration. When coupled to agarose, the Erythrina inhibitor provided an effective reagent for affinity purification of tissue plasminogen activator from melanoma cell-conditioned tissue culture medium. Using this as a single-step procedure, 270-fold purified enzyme was reproducibly obtained with yields of 90% or greater. Both one- and two-chain forms of tissue plasminogen activator were purified. The enzyme migrated, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as a predominant 72,000-dalton doublet with lesser amounts of immunochemically similar, 115,000- and 68,000-dalton components.  相似文献   

12.
A urokinase-type plasminogen activator was purified from conditioned media of several human cell cultures, but preferably from the human lung adenocarcinoma line CALU-3 (ATCC, HTB-55), using a combination of chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, and Sephadex G-100. Final yields of 65-100 micrograms/liter of starting material were obtained with a 290-fold purification factor and a recovery of 30%. The purified plasminogen activator consists of a single polypeptide chain with Mr 54,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and is very similar or identical to single-chain urokinase-type plasminogen activator on the basis of immunodiffusion, amino acid composition, and the lack of specific binding to fibrin. It has very low amidolytic activity on Pyroglu-Gly-Arg-rho-nitroanilide and is converted to two-chain urokinase by limited exposure to plasmin. It has a specific activity of 60,000 IU/mg on fibrin plates and directly activates plasminogen following Michaelis-Menten kinetics with Km = 1.1 microM and kappa cat = 0.0026 S-1. It is concluded that the plasminogen activator purified from CALU-3-conditioned media is physically and kinetically identical to single-chain urokinase-type plasminogen activator. With the present straightforward purification method and a readily available source, sufficient amounts of single-chain urokinase-type plasminogen activator can be obtained for more detailed investigations of its biochemical, biological, and thrombolytic properties.  相似文献   

13.
The effects of recombinant tissue-type plasminogen activator (rt-PA) and of an inactive mutant of rt-PA, obtained by mutagenesis of the active site Ser478 to Ala (rt-PA-Ala478), on the synthesis and secretion of plasminogen activator inhibitor-1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) in culture were studied. Under base-line conditions, PAI-1 antigen secretion was 4.3 +/- 1.0 micrograms (mean +/- S.D., n = 8) per 10(6) cells in 24 h. This PAI-1 had a low specific activity (6,000 +/- 1,600 units/mg) and Mr of 50,000, which was not altered by addition of rt-PA. In HUVEC cultured with 2 micrograms/ml rt-PA-Ala478, PAI-1 antigen secretion was 2.1 +/- 0.8 micrograms (n = 5) per 10(6) cells in 24 h with a specific activity of 120,000 +/- 42,000 units/mg and Mr of 50,000. Addition of rt-PA to this conditioned medium resulted in generation of three main components: 16% migrated as an Mr 106,000 rt-PA.PAI-1 complex, 16% as an Mr 81,000 degraded rt-PA.PAI-1 complex and the remainder as an Mr 45,000 degradation product of PAI-1. HUVEC cultured with 2 micrograms/ml rt-PA secreted 3.9 +/- 0.6 micrograms (n = 8) PAI-1 antigen per 10(6) cells within 24 h, of which 20-50% occurred as intact or degraded complexes with t-PA (Mr 106,000 and 81,000) and the rest as an inactive Mr 45,000 degradation product of PAI-1. PAI-1 mRNA levels, determined by Northern blot analysis and expressed relative to beta-actin mRNA levels, were very similar for HUVEC cultured in the absence or the presence of rt-PA or rt-PA-Ala478. It is concluded that PAI-1 is secreted by HUVEC in culture in fully active form which spontaneously inactivates. PAI-1 can be stabilized by addition of rt-PA-Ala478 to the culture medium, resulting in a 20-fold increase in specific activity. Interaction of rt-PA with active PAI-1 produces both t-PA.PAI-1 complex and an inactive degradation product of PAI-1.  相似文献   

14.
The plasminogen activator secreted by calcitonin-treated pig kidney cells was purified, characterized and compared with human urinary urokinase. The purification procedure was based on the following steps: sulphopropyl-Sephadex chromatography, p-aminobenzamidine-Sepharose chromatography, preparative sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and isoelectrofocusing. The purified enzyme was obtained from the conditioned medium with a yield of 13% and a purification factor of 390-fold. Analysis by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under non-reducing conditions showed one closely spaced doublet with an Mr of 50 000; in the presence of reducing agents, two additional bands of Mr 30 000 and 20 000 appeared. The purified enzyme resembles the 53 000-Mr components of human urinary urokinase in amino acid composition and two-dimensional tryptic peptide maps and in its catalytic properties, and the two enzymes cross-react immunologically with rabbit antibodies raised against either. The enzyme appears to be different from tissue plasminogen activator secreted by HeLa cells.  相似文献   

15.
16.
A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells in the same concentration range. This molecule was identified as a basic fibroblast growth factor-like molecule on the basis of its biological activity, its affinity for heparin-Sepharose, and its cross-reactivity with a polyclonal antibody raised against the human placental basic fibroblast growth factor.  相似文献   

17.
Functionally active (high-Mr) and inactive (low-Mr) plasminogen activator inhibitor 1 (PAI) have been purified from fibrosarcoma cell-line HT 1080 conditioned medium, containing 1% fetal calf serum. The two forms were first purified by affinity chromatography on heparin-Sepharose and then separated from each other by gel filtration on Sephadex G-150. The final purification was achieved by affinity chromatography on insolubilized monoclonal antibodies towards human PAI. Alternatively, the low-Mr form was purified by chromatography on carboxymethyl-cellulose. Low-Mr PAI purified in this way, could be almost fully reactivated by treatment with guanidinium chloride. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by immunoblotting revealed that the low-Mr form contained nothing but PAI at an Mr of about 50,000. In addition to PAI, the high-Mr form contained a component, which was not antigenically related to PAI. This compound had a molecular weight of about 75,000 and its NH2-terminal amino acid sequence corresponded to that of human vitronectin. We conclude that the high-Mr form of PAI constitutes a complex between 50,000 Mr PAI and vitronectin from fetal calf serum.  相似文献   

18.
The human U373 glioblastoma/astrocytoma cell line was found to constitutively produce and secrete a plasminogen activator and a plasminogen activator inhibitor. The plasminogen activator was identified as urokinase based on apparent molecular weight, immunoblotting with anti-urokinase antibodies, and Northern blotting with a human urokinase cDNA probe. The inhibitor secreted by U373 cells was found to be related to the PAI-1 molecule based on reactivity with anti-human PAI-1 antibodies, apparent molecular weight, and Northern blot analysis with a human PAI-1 cDNA probe. The expression of both urokinase and the PAI-1-like molecule by U373 cells could be modulated by phorbol myristate acetate or by inflammatory mediators such as interferon-gamma and interleukin-1. In the case of interleukin-1, the alpha form exhibited no detectable effect while the beta form not only elevated inhibitor levels, it also appeared to induce the production of tissue plasminogen activator. Thus, in these cells interleukin-1 beta induces alterations in PA and PAI expression and interleukin-1 alpha does not, even though the two forms are reported to utilize the same cellular receptor.  相似文献   

19.
The binding of type 1 plasminogen activator inhibitor (PAI-1) to the extracellular matrix (ECM) of cultured bovine aortic endothelial cells was investigated using purified 125I-labeled or L-[35S]methionine-labeled PAI-1 as probes. Little specific binding of latent PAI-1 to ECM previously depleted of endogenous PAI-1 could be demonstrated. In contrast, the guanidine-activated form of PAI-1 bound to ECM in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 60 nM by Scatchard analysis, and approximately 6 pmol of activated PAI-1 was bound per cm2 of ECM. Binding was relatively specific since unlabeled, activated PAI-1 competed with 35S-labeled PAI-1 for binding to ECM, but latent PAI-1 did not. Moreover, PAI-2, protein C inhibitor (i.e. PAI-3), protease nexin-1, and alpha 2-antiplasmin were not able to compete. Tissue-type plasminogen activator (tPA) also inhibited binding, but diisopropyl fluorophosphate-inactivated tPA did not. Pretreatment of ECM with tPA, urokinase-type PA, or thrombin had no effect on its ability to subsequently bind PAI-1, whereas trypsin, plasmin, and elastase pretreatment greatly reduced its ability to bind PAI-1. Guanidine-activated, radiolabeled PAI-1 resembled active endogenous PAI-1 since it was unstable in solution but stable when bound to ECM. In addition, it formed complexes with tPA that had a relatively low affinity for ECM. These data suggest that ECM of bovine aortic endothelial cells contains a protease-sensitive structure that binds active PAI-1 tightly and relatively selectively and that this association stabilizes PAI-1 against the spontaneous loss of activity that occurs in solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号