首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NH2-terminal Jun kinases (JNKs) function in diverse roles through phosphorylation and activation of AP-1 components including ATF2 and c-Jun. However, the genes that mediate these processes are poorly understood. A model phenotype characterized by rapid activation of Jun kinase and enhanced DNA repair following cisplatin treatment was examined using chromatin immunoprecipitation with antibodies against ATF2 and c-Jun or their phosphorylated forms and hybridization to promoter arrays. Following genotoxic stress, we identified 269 genes whose promoters are bound upon phosphorylation of ATF2 and c-Jun. Binding did not occur following treatment with transplatin or the JNK inhibitor SP600125 or JNK-specific siRNA. Of 89 known DNA repair genes represented on the array, 23 are specifically activated by cisplatin treatment within 3-6 hr. Thus, the genotoxic stress response occurs at least partly via activation of ATF2 and c-Jun, leading to large-scale coordinate gene expression dominated by genes of DNA repair.  相似文献   

2.
3.
4.
Platelet-derived growth factor (PDGF) is a critical regulator of proliferation and migration for mesenchymal type cells. In this study, we examined the role of mitogen-activated protein (MAP) kinases in the PDGF-BB-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells (hATSCs). The PDGF-induced proliferation was prevented by a pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor, SP600125. However, it was not prevented by a pretreatment with a p38 MAP kinase inhibitor, SB202190, and a specific inhibitor of the upstream kinase of extracellular signal-regulated kinase (ERK1/2), U0126. Treatment with PDGF induced the activation of JNK and ERK in hATSCs, and pretreatment with SP600125 specifically inhibited the PDGF-induced activation of JNK. Treatment with PDGF induced the cell cycle transition from the G0/G1 phase to the S phase, the elevated expression of cyclin D1, and the phosphorylation of Rb, which were prevented by a pretreatment with SP600125. In addition, the PDGF-induced migration of hATSCs was completely blocked by a pretreatment with SP600125, but not with U0126 and SB202190. These results suggest that JNK protein kinase plays a key role in the PDGF-induced proliferation and migration of mesenchymal stem cells.  相似文献   

5.
Liu X  Xu F  Fu Y  Liu F  Sun S  Wu X 《Proteomics》2006,6(13):3792-3800
Hypoxic preconditioning (HPC) attenuates tissue injury caused by ischemia/reperfusion. The protective mechanisms of HPC involve up-regulation of the protective proteins and mitigation of cellular calcium overload. Calreticulin (CRT), a Ca(2+)-binding chaperone, plays an important role in regulating calcium homeostasis and folding of proteins. The role of CRT in cardioprotection of HPC and the pathways determining CRT expression during HPC are not clear. In this work, 2-DE and MALDI-MS were employed to analyze CRT differential expression in cardiomyocytes subjected to transient hypoxia. Western blotting analysis was used to detect the CRT expression and activities of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH(2)-terminal kinase (JNK) in myocardium subjected to ischemia with and without HPC and sham operation. The hearts from HPC group were more resistant to sustained ischemia and had much stronger phosphorylation of p38 MAPK, with a reduced phosphorylation of JNK, than controls. The CRT expression was positively correlated with the phosphorylation of p38 MAPK and negatively correlated with the level of JNK phosphorylation. Furthermore, inhibition of the p38 MAPK with SB202190 abolished, while inhibition of the JNK with SP600125 enhanced the CRT up-regulation in cardiomyocytes induced by HPC. The results indicate that HPC up-regulates CRT expression through the MAPK signaling pathways.  相似文献   

6.
7.
We previously reported that endothelin-1 (ET-1) activates both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that not p44/p42 MAP kinase but p38 MAP kinase participates in the ET-1-induced vascular endothelial growth factor (VEGF) synthesis. In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) in ET-1-induced VEGF synthesis in these cells. ET-1 significantly induced the phosphorylation of JNK in a dose-dependent manner in the range between 0.1 and 100 nM. SP600125, an inhibitor of JNK, markedly reduced the ET-1-induced VEGF synthesis. A combination of SP600125 and SB203580 additively reduced the ET-1-stimulated VEGF synthesis. SP600125 suppressed the ET-1-induced phosphorylation of JNK, while having no effect on the phosphorylation of p38 MAP kinase elicited by ET-1. SB203580, an inhibitor of p38 MAP kinase, hardly affected the ET-1-induced phosphorylation of JNK. These results strongly suggest that JNK plays a role in ET-1-induced VEGF synthesis in addition to p38 MAP kinase in osteoblasts.  相似文献   

8.
9.
10.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   

11.
Beers A  Haas MJ  Wong NC  Mooradian AD 《Biochemistry》2006,45(7):2408-2413
Plasma high-density lipoprotein and apolipoprotein AI (apoAI) levels are suppressed by tumor necrosis factor alpha. To determine the molecular mechanisms responsible for the effect of TNF alpha on the apoAI promoter activity, HepG2 cells were exposed to both genetic and pharmacological modulators of TNF alpha-mediated signaling in the presence or absence of TNF alpha. Exogenous ERK1 and ERK2 expression suppressed basal apoAI promoter activity; however, only ERK2 enhanced the ability of TNF alpha to suppress apoAI promoter activity. Exogenous expression of all three MEK isoforms (MEK1, MEK2A, and MEK2E) suppressed basal apoAI promoter activity and further aggravated TNF alpha-related apoAI promoter activity inhibition. Treatment with SB202190 (p38 MAP kinase inhibitor) alone significantly increased apoAI promoter activity; however, in the presence of TNF alpha, apoAI promoter activity was suppressed to an extent similar to that in cells not treated with SB202190. ApoAI promoter activity increased in cells treated with the specific JNK inhibitor SP600125, but unlike SB202190 treatment, the level of TNF alpha-related apoAI promoter inhibition was reduced by 50%. Similarly, the level of TNF alpha-related apoAI promoter inhibition was reduced in cells transfected with JNK1 siRNA. Finally, treatment of cells with the NF-kappaB inhibitors BAY and SN-50 or overexpression of NF-kappaB subunits p50 and p65 had no effect on the ability of TNF alpha to repress apoAI promoter activity. These results suggest that TNF alpha suppresses apoAI promoter activity through both the MEK/ERK and JNK pathways but is not mediated by either p38 MAP kinase activity or NF-kappaB activation.  相似文献   

12.
13.
Treatment with 1-4 microM As(2)O(3) slightly induced apoptosis in U-937 human promonocitic leukemia cells. This effect was potentiated by co-treatment with MEK/ERK (PD98059, U0126) and JNK (SP600125, AS601245) inhibitors, but not with p38 (SB203580, SB220025) inhibitors. However, no potentiation was obtained using lonidamine, doxorubicin, or cisplatin instead of As(2)O(3). Apoptosis potentiation by mitogen-activated protein kinase (MAPK) inhibitors involved both the intrinsic and extrinsic executionary pathways, as demonstrated by Bax activation and cytochrome c release from mitochondria, and by caspase-8 activation and Bid cleavage, respectively; and the activation of both pathways was prevented by Bcl-2 over-expression. Treatment with MEK/ERK and JNK inhibitors, but not with p38 inhibitors, caused intracellular glutathione (GSH) depletion, which was differentially regulated. Thus, while it was prevented by N-acetyl-L-cysteine (NAC) in the case of U0126, it behaved as a NAC-insensitive process, regulated at the level of DL-buthionine-(S,R)-sulfoximine (BSO)-sensitive enzyme activity, in the case of SP600125. The MEK/ERK inhibitor also potentiated apoptosis and decreased GSH content in As(2)O(3)-treated NB4 human acute promyelocytic leukemia (APL) cells, but none of these effects were produced by the JNK inhibitor. MEK/ERK and JNK inhibitors did not apparently affect As(2)O(3) transport activity, as measured by intracellular arsenic accumulation. SP600126 greatly induced reactive oxygen species (ROS) accumulation, while BSO and U0126 had little or null effects. These results, which indicate that glutathione is a target of MAP kinases in myeloid leukemia cells, might be exploited to improve the antitumor properties of As(2)O(3), and provide a rationale for the use of kinase inhibitors as therapeutic agents.  相似文献   

14.
Interleukin-1beta (IL-1beta) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for IL-1beta-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1beta induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH(2)-terminal kinase (JNK; SP-600125). Consistently, IL-1beta-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1beta-induced VCAM-1 expression was significantly blocked by the specific NF-kappaB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1beta-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1beta exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-kappaB pathways is essential for IL-1beta-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in airway disease.  相似文献   

15.
16.
17.
Catechin, one of the major flavonoids presented in plants such as tea, reportedly suppresses bone resorption. We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells. To clarify the mechanism of catechin effect on osteoblasts, we investigated the effect of (--)-epigallocatechin gallate (EGCG), one of the major green tea flavonoids, on the VEGF synthesis by PGF(2alpha) in MC3T3-E1 cells. The PGF(2alpha)-induced VEGF synthesis was significantly enhanced by EGCG. The amplifying effect of EGCG was dose dependent between 10 and 100 microM. EGCG did not affect the PGF(2alpha)-induced phosphorylation of p44/p42 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, and SP600125, a specific inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), reduced the PGF(2alpha)-induced VEGF synthesis. EGCG markedly enhanced the phosphorylation of SAPK/JNK induced by PGF(2alpha) without affecting the PGF(2alpha)-induced phosphorylation of p38 MAP kinase. SP600125 markedly reduced the amplification by EGCG of the SAPK/JNK phosphorylation. In addition, the PGF(2alpha)-induced phosphorylation of c-Jun was amplified by EGCG. These results strongly suggest that EGCG upregulate PGF(2alpha)-stimulated VEGF synthesis resulting from amplifying activation of SAPK/JNK in osteoblasts.  相似文献   

18.
Cytosolic phospholipase A(2) (cPLA(2)) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by tumor necrosis factor-α (TNF-α). However, the mechanisms underlying TNF-α-induced cPLA(2) expression and PGE(2) synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. Here, we report that TNF-α-induced cPLA(2) protein and mRNA expression, PGE(2) production, and phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which were attenuated by pretreatment with a ROS scavenger [N-acetyl-L-cysteine, (NAC)] and the inhibitors of NADPH oxidase [apocynin (APO) and diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNA of Nox2, p47(phox) , MEK1, p42, p38, or JNK2. TNF-α-induced cPLA(2) expression was also inhibited by pretreatment with a selective NF-κB inhibitor [helenalin (HLN)] or transfection with dominant negative mutants of NF-κB inducing kinase (NIK) or IκB kinase (IKK)α/β. TNF-α-induced NF-κB translocation was blocked by pretreatment with NAC, DPI, APO, or HLN, but not by U0126, SB202190, or SP600125. In addition, pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA blocked cPLA(2) expression and PGE(2) synthesis induced by TNF-α. We further confirmed that p300 was associated with the cPLA(2) promoter which was dynamically linked to histone H4 acetylation stimulated by TNF-α, determined by chromatin immunoprecipitation assay. Association of p300 and histone H4 to cPLA(2) promoter was inhibited by U0126, SB202190, and SP600125. These results suggested that in HTSMCs, activation of p47(phox) , MAPKs, NF-κB, and p300 is essential for TNF-α-induced cPLA(2) expression and PGE(2) release.  相似文献   

19.
20.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号