首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herman G. Weller Jr  H.Ti Tien 《BBA》1973,325(3):433-440
Photovoltage spectroscopy with polarized light has been used to investigate the structure of black lipid membranes formed from spinach chloroplast extracts. The photovoltage action spectrum of the black lipid membranes is similar to the absorption spectrum of the membrane-forming solution, with a red and principal blue peak. The magnitudes of these peaks have been found to depend on the direction of polarization of the exciting light. This is apparently a direct consequence of the dichroism of the membrane. The polarized light photovoltage data have been used to obtain information on the orientation of chlorophyll in the membrane.  相似文献   

3.
Summary The composition and structure of lipid bilayer membranes containing chlorophylla have been studied with photometric and fluorometric methods. A sensitive double-beam spectrophotometer is described by which the pigment concentration in the bilayer can be determined. Up to 3×1013 chlorophyll molecules per cm2 can be incorporated into the membrane, corresponding to a mean distance of 20 ? between the porphyrin rings. At high chlorophyll concentrations, the absorption peaks are shifted toward longer wavelengths, indicating an interaction between porphyrin rings in the film. Parallel to the spectral shifts, a large decrease in the fluorescence quantum yield and a depolarization of the fluorescence are observed. These findings suggest that transfer of excitation energy takes place between neighboring chlorophyll molecules in the membrane. When an oxidating agent (K2S2O8) is added toone external phase, exactly half of the chlorophyll in the film is destroyed. This observation suggests that the chlorophyll molecules are localized in the membrane surfaces with the phytyl chains inserted into the hydrocarbon core of the membrane and the porphyrin rings facing the aqueous solution.  相似文献   

4.
5.
6.
Intermediates in the formation of the chlorophyll isocyclic ring   总被引:8,自引:1,他引:7       下载免费PDF全文
Cell-free, organelle-free synthesis of Mg-2,4-divinylpheoporphyrin a5 (MgDVP) from Mg-protoporphyrin IX monomethyl ester (Mg-Proto Me) has been described (Wong and Castelfranco 1984 Plant Physiol 75: 658-661). This system consists of plastid membrane and stromal fractions and requires O2, NAD(P)H and S-adenosylmethionine (SAM). The synthetic 6-methyl-β-ketopropionate analog of Mg-Proto Me was converted to MgDVP by the same catalytic system in the presence of O2 and NADPH. SAM was not required. A compound (X) displaying the kinetic behavior of an intermediate was isolated from reaction mixtures with Mg-Proto Me as the substrate, but not with the 6-methyl-β-ketopropionate analog as the substrate. X was identified as the 6-methyl-β-hydroxypropionate analog of Mg-Proto Me by conversion to the dimethyl ester with CH2N2 and comparison with authentic 6-β-hydroxydimethyl ester. X was converted to MgDVP by the same catalytic system in the presence of O2 and NADPH. We conclude that the conversion of Mg-Proto Me to MgDVP proceeds through the 6-β-hydroxy and the 6-β-ketopropionate esters in agreement with earlier suggestions.  相似文献   

7.
8.
Fluorescence decay kinetics of chlorophyll in photosynthetic membranes   总被引:2,自引:0,他引:2  
The absorption of light by the pigments of photosynthetic organisms results in electronic excitation that provides the energy to drive the energy-storing light reactions. A small fraction of this excitation gives rise to fluorescence emission, which serves as a sensitive probe of the energetics and kinetics of the excited states. The wavelength dependence of the excitation and emission spectra can be used to characterize the nature of the absorbing and fluorescing molecules and to monitor the process of sensitization of the excitation transfer from one pigment to another. This excitation transfer process can also be followed by the progressive depolarization of the emitted radiation. Using time-resolved fluorescence rise and decay kinetics, measurements of these processes can now be characterized to as short as a few picoseconds. Typically, excitation transfer among the antenna or light harvesting pigments occurs within 100 psec, whereupon the excitation has reached a photosynthetic reaction center capable of initiating electron transport. When this trap is functional and capable of charge separation, the fluorescence intensity is quenched and only rapidly decaying kinetic components resulting from the loss of excitation in transit in the antenna pigment bed are observed. When the reaction centers are blocked or saturated by high light intensities, the photochemical quenching is relieved, the fluorescence intensity rises severalfold, and an additional slower decay component appears and eventually dominates the decay kinetics. This slower (1-2 nsec) decay results from initial charge separation followed by recombination in the blocked reaction centers and repopulation of the excited electronic state, leading to a rapid delayed fluorescence component that is the origin of variable fluorescence. Recent growth in the literature in this area is reviewed here, with an emphasis on new information obtained on excitation transfer, trapping, and communication between different portions of the photosynthetic membranes.  相似文献   

9.
In order to investigate the relative importance of the hydrophobic and headgroup interactions of chlorophyll a in phospholipid bilayers, we have carried out differential scanning calorimetry (DSC) and deuterium (2H) and phosphorus (31P) nuclear magnetic resonance (NMR) experiments on the multilamellar system of chlorophyll a in dimyristoylphosphatidylcholine (DMPC). Compared to the phytol chain of chlorophyll and the previously reported distearoylphosphatidylcholine (DSPC), the acyl chains of DMPC are shorter in length by three and four carbons, respectively. A lowering in the phase-transition temperature was observed for the DMPC multilayers in the presence of chlorophyll a in the DSC thermograms and in the 31P chemical shift anisotropy measurements. These results, together with data on hydrophobic interactions as measured by 2H-NMR and on headgroup interactions as evidenced from 31P-NMR, suggest a phase diagram for the chlorophyll a/DMPC system in which phase separation readily occurs between a chlorophyll-rich compound phase and a chlorophyll-poor phospholipid phase. Compound formation appears to be important in the stabilization of chlorophyll a in bilayers with shorter chains.  相似文献   

10.
11.
N,N,N,N′-tetramethyl-p-phenylenediamine (TMPD) was previously used to study the kinetics of the OJIP chlorophyll fluorescence rise. The present study is an attempt to elucidate the origin of TMPD-induced delay and quenching of the I–P step of fluorescence rise. For this purpose, we analyzed the kinetics of OJIP rise in thylakoid membranes in which electron transport was modified using ascorbate, methyl viologen (MV), and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). In the absence of TMPD, the OJIP kinetics of fluorescence induction (FI) was not altered by ascorbate. However, ascorbate eliminated the I–P rise delay caused by high concentrations of TMPD. On the other hand, neither ascorbate nor DBMIB, which blocks the electron release from Photosystem II (PS II) at the cytochrome b6/f complex, could prevent the quenching of I–P rise by TMPD. In control thylakoids, MV suppressed the I–P rise of FI by about 60. This latter effect was completely removed if the electron donation to MV was blocked by DBMIB unless TMPD was present. When TMPD intercepted the linear electron flow from PS II, re-oxidation of TMPD by photosystem I (PS I) and reduction of MV fully abolished the I–P rise. The above is in agreement with the fact that TMPD can act as an electron acceptor for PS II. With MV, the active light-driven uptake of O2 during re-oxidation of TMPD by PS I contributes towards an early decline in the I–P step of the OJIP fluorescence rise.  相似文献   

12.
The three major chlorophyll-proteins of spinach chloroplasts were solubilized with digitonin and isolated by electrophoresis with deoxycholate. The gel bands were identified from their absorption and fluorescence spectra measured at 77 K. The slowest moving band was a Photosystem I complex (CPI); the second, a Photosystem II complex (Cpa); and the third, a chlorophyll a-b, antenna complex (LHCP). When absorption spectra (630–730 nm) of the bands were added in the proportions found in the gel, the sum closely matched the absorption of the chloroplasts both before and after solubilization. Thus these spectra represent the native absorption of the major antenna chlorophyll-proteins of green plants. Each of these spectra was resolved with a computer assisted, curve-fitting program into 8 mixed Gaussian-Lorentzian shaped components. The major, Chl a components in the 3 fractions were different both in peak positions and bandwidths. This result suggests that each chlorophyll-protein has its own unique set of chlorophyll a spectral forms or components.Abbreviations Chl chlorophyll - CPI Photosystem I Chl-protein - CPa Photosystem II Chl-protein - LHCP light-harvesting Chl a-b protein - DOC sodium deoxycholate - SDS sodium dodecylsulfate CIW-DPB No. 819  相似文献   

13.
The three major chlorophyll-proteins of spinach chloroplasts were solubilized with digitonin and isolated by electrophoresis with deoxycholate. The gel bands were identified from their absorption and fluorescence spectra measured at 77 K. The slowest moving band was a Photosystem I complex (CPI); the second, a Photosystem II complex (Cpa); and the third, a chlorophyll a-b, antenna complex (LHCP). When absorption spectra (630–730 nm) of the bands were added in the proportions found in the gel, the sum closely matched the absorption of the chloroplasts both before and after solubilization. Thus these spectra represent the native absorption of the major antenna chlorophyll-proteins of green plants. Each of these spectra was resolved with a computer assisted, curve-fitting program into 8 mixed Gaussian-Lorentzian shaped components. The major, Chl a components in the 3 fractions were different both in peak positions and bandwidths. This result suggests that each chlorophyll-protein has its own unique set of chlorophyll a spectral forms or components.  相似文献   

14.
The electrical breakdown potential of the planar lipid membranes has been shown to decrease following UV-induced lipid peroxidation, action of phospholipase A2, adsorption of protamine sulphate and expansion of the membrane by hydrostatic pressure. Membrane potential generated upon the addition of potassium acetate (or ammonium sulphate) and protonophore CCCP to liposomes, when large enough, was also able to break membranes; this was suggested by liposome swelling and a rapid decrease in suspension turbidity. UV-irradiation decreased liposomal membrane breakdown potential, while cholesterol increased it. Detergents and water-soluble products of lipid peroxidation decreased the breakdown potential. The possible role of the membrane electrical breakdown phenomenon in cell pathology is discussed.  相似文献   

15.
A quantum mechanical model is developed for the observed resonance enhancement of light scattering by aggregates of electronically interacting chromophores. Aggregate size, monomer oscillator strength, extent of electronic coupling, and aggregate geometry are all important determinants of intensity in resonance light scattering (RLS) spectra. The theory also predicts the value of the depolarization ratio (rho(v)(90)) of RLS for a given aggregate geometry. These results are used to interpret the RLS depolarization ratios of four aggregates: tetrakis(4-sulfonatophenyl)porphine aggregated at low pH (rho(v)(90) = 0.17 at 488 nm), trans-bis(N-methylpyridinium-4-yl)-diphenylporphinato copper(II) aggregated in 0.2 M NaCl solution (rho(v)(90) = 0.13 at 450 nm) and on calf thymus DNA (rho(v)(90) = 0.20 at 454 nm), and chlorophyll a aggregates in formamide/water (rho(v)(90) = 0.23 and 0.32 at 469 and 699 nm, respectively). The analysis is consistent with a J-aggregate geometry for all four systems. Furthermore, the specific values of rho(v)(90) allow us to estimate the orientation of the monomer transition dipoles with respect to the long axis of the aggregate. We conclude that depolarized resonance light scattering spectroscopy is a powerful probe of the geometric and electronic structures of extended aggregates of strong chromophores.  相似文献   

16.
The Q(y) transition dipole moment vectors of all eight chlorophylls in the higher-plant antenna protein CP29 were calculated by an original method on the basis of linear dichroism and absorption spectroscopy. The contribution of individual chromophores was determined from difference spectra between wild type and mutant proteins in which a single chlorophyll has been removed by mutating pigment-binding residues. Recombinant proteins were constructed by overexpressing the apoprotein in bacteria and refolding of the pigment-protein complex in vitro [Bassi, R., Croce, R., Cugini, D., and Sandonà, D. (1999) Proc. Natl. Acad. Sci. U.S.A. (in press)]. The spectroscopic data are interpreted on the basis of a protein structural model obtained via the homology with the major antenna complex LHCII [Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y. (1994) Nature 367, 614-621]. The results allow us to determine the orientation of six chromophores within the protein structure. The orientations of the two remaining chromophores are inferred by considering the symmetry properties of CP29 and fitting steady state absorption and linear dichroism spectra by independent chlorophyll spectral forms. As a consequence, four "mixed" sites with different chlorophyll a and b binding affinities are identified in CP29. Geometrical data and the F?rster mechanism for energy transfer suggest that excitation energy equilibrates rapidly among chlorophyll "pure" sites while energy preferentially flows outward from chlorophyll "mixed" sites. The orientation of the dipole moments of two chlorophyll molecules symmetrically located at the center of the protein and parallel to the carotenoid transition vectors suggests a role in energy transfer from xanthophyll to chlorophyll.  相似文献   

17.
Chlamydomonas reinhardtii chloroplasts catalyzed two sequential steps of Chl biosynthesis, S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase and Mg-protoporphyrin IX monomethyl ester oxidative cyclase. A double mutant strain of C. reinhardtii was constructed which has a cell wall deficiency and is unable to form chlorophyll in the dark. Dark-grown cells were disrupted with a BioNeb nebulizer under conditions which lysed the plasma membrane but not the chloroplast envelope. Chloroplasts were purified by Percoll density gradient centrifugation. The purified chloroplasts were used to define components required for the biosynthesis of Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) from Mg-protoporphyrin IX. Product formation requires the addition of Mg-protoporphyrin IX, the substrate for S-adenosyl-l-methionine:Mg-protoporphyrin IX methyltransferase which produces Mg-protoporphyrin IX monomethyl ester. The Mg-protoporphyrin IX monomethyl ester that is generated in situ is the substrate for Mg-protoporphyrin IX monomethyl ester oxidative cyclase. The reaction product was identified as Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) by excitation and emission spectrofluorometry and HPLC on ion-paired reverse-phase and polyethylene columns. Mg-2,4-divinylpheoporphyrin a 5 formation by the coupled enzyme system required O2 and was stimulated by the addition of NADP+, an NADPH regenerating system, and S-adenosyl-l-methionine. Product was formed at a relatively steady rate for at least 60 min.Abbreviations MgDVP Mg-2,4-divinylpheoporphyrin a 5 (divinyl protochlorophyllide) - SAM S-adenosyl-l-methionine  相似文献   

18.
The purpose of this study was to determine the effect of heme pocket hydrophobicity on the reactivity of manganese peroxidase. Residues within 5 A of the heme active site were identified. From this group, Leu169 and Ser172 were selected and mutated to Phe and Ala, respectively. The mutant proteins were then characterized by steady-state kinetics. Whereas the Leu169Phe mutation had little, if any, effect on activity, the Ser172Ala mutation decreased kcat and also the specificity constant (kcat/Km) for Mn2+, but not H2O2. Transient-state studies indicated that the mutation affected only the reactions of compound II. These results indicate that compound II is the most sensitive to changes in the heme environment.  相似文献   

19.
20.
By analyzing the steady state and time-resolved fluorescence anisotropy, the internal motions of chlorophyll a of light-harvesting chlorophyll a/b-protein complex (LHCII) were characterized in a dimyristoylphosphatidylcholine (DMPC) liposome. Corresponding to the thermotropic phase of the membrane, chlorophyll a showed an unique internal motion in LHCII. At the gel phase, two motional components, one fast and the other slow, were observed, which would originate in the heterogeneity of the mutual orientation and the binding site of the chlorophyll a in LHCII. Interestingly, the faster motion was suppressed and only the slower segmental rotation with the larger motional amplitude was allowed on the phase transition to a liquid crystalline phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号