首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of Ca(2+)- and phospholipid-dependent protein kinase (C kinase), stimulates luteinizing hormone (LH) release from rat pituitary cells. The actions of TPA upon LH release were compared with those of the GnRH superagonist [D-Ala6] des-Gly10-GnRH N-ethylamide (GnRHa) in cultured pituitary cells. LH release was stimulated by 0.1 nM TPA and the maximum response at 10 nM TPA was 50% of the LH response to GnRHa. The ED50 values for TPA and GnRHa were 1.2 and 0.037 nM, respectively, and the maximum stimulatory effects of TPA and GnRHa on LH release were not additive. GnRHa-stimulated LH release was decreased by calmodulin (CaM) antagonists including pimozide, trifluoperazine, W5 and W7, being most effectively reduced (by 70%) by 10 microM pimozide. In contrast to their inhibition of GnRH action, these antagonists enhanced TPA-stimulated LH release, so that 10 microM pimozide and W7 doubled the maximum LH response. The potent GnRH antagonist [Ac-D-p-Cl-Phe1.2, D-Trp3, D-Lys6, D-Ala10]GnRH, which completely inhibited GnRHa-stimulated LH release with ID50 of 6.8 nM, also reduced maximum TPA-stimulated LH release by about 50%. These results suggest that both Ca2+/CaM and C kinase pathways are involved in the LH release mechanism, and indicate that C kinase plays a major role in the action of GnRH upon gonadotropin secretion. The synergism between CaM antagonists and TPA suggests that blockade of CaM-mediated processes leads to enhanced activation of the C kinase pathway, possibly by removal of an inhibitory influence. Furthermore, the partial inhibition of TPA-stimulated LH release by a GnRH antagonist suggests that the pathway(s), specifically connected with LH release in the diverse effects of C kinase, might be locked by the continuous receptor inactivation by antagonist and indicates the complicated pathways which diverge from the receptor and converge into specific cellular response.  相似文献   

2.
The effect of an agonistic gonadotropin releasing hormone (GnRH)-analog (D-Ala6, des-Gly10-NH2-GnRH-ethylamide, GnRHa) on granulosa cell steroidogenesis in the presence or absence of follicle-stimulating hormone (FSH) or luteinizing hormone (LH) was studied. Granulosa cells, isolated from preovulatory follicles of pregnant mare's serum gonadotropin (PMSG)-treated immature rats or from the less mature follicles of untreated immature rats, were cultured for a period of 72 h with daily changes of medium, and progesterone and its metabolite, 20 alpha-dihydro-progesterone (20 alpha-OHP), were assayed in the medium. In granulosa cells from preovulatory follicles, LH and FSH caused a much greater stimulation of steroidogenesis than did GnRHa. There appeared to be no interaction between GnRHa and FSH during the first 10 h, but at 24 h and later the presence of GnRHa clearly inhibited the steroidogenic response to LH and FSH. Steroidogenesis in granulosa cells from immature rats was considerably lower and the effects of GnRHa and FSH alone less pronounced. In these cells, FSH-stimulated progesterone secretion was inhibited by GnRHa only at 72 h. In contrast, 20 alpha-OHP secretion in the same cultures was potentiated by the combined presence of FSH and GnRHa. In conclusion, it seems as though the effects of GnRHa on granulosa cell steroidogenesis varies with exposure time, the initial response being stimulatory and the later inhibitory. Furthermore, the response is also to some extent determined by the maturational stage of the granulosa cells.  相似文献   

3.
Tu Lin 《Life sciences》1985,36(13):1255-1264
Gonadotropin-releasing hormone agonist (GnRHa) markedly increased testosterone formation from 2.35 ± 0.13 ng/ml of the controls to 14.92 ± 0.33 ng/ml (mean ± SE) in isolated and purified rat Leydig cells. GnRHa-induced testosterone formation was completely blocked by phospholipase A2 inhibitor (chloroquin, 10?4M), but was potentiated by the addition of either cyclo-oxygenase inhibitor (indomethacin) or lipoxygenase inhibitor (nordihydroguaiaretic acid, NDGA). Arachidonic acid also directly stimulated Leydig cell steroidogenesis and activated Ca/phospholipid dependent protein kinase. Steroidogenic effects of arachidonic acid were also potentiated by the addition of either indomethacin or NDGA. These results suggest that arachidonic acid may be important in mediating direct stimulatory effects of GnRH on Leydig cell steroidogenesis, and the conversion of arachidonic acid to either prostaglandins or leukotrienes is not required for its steroidogenic effect.  相似文献   

4.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   

5.
The mechanism(s) of the development of response to catecholamines (CA) by Leydig cells in culture was investigated with the use of primary culture of purified Leydig cells of adult rats. The interactions of a CA agonist, isoproterenol (ISOP), with luteinizing hormone (LH) and a luteinizing hormone-releasing hormone agonist analog (LHRHa) on production of androgen by the Leydig cells were also studied. Cells incubated with ISOP for 3 h increased release of cyclic adenosine 3',5'-monophosphate (cAMP) to similar extents at 0, 3, and 24 h of culture. The beta-agonist did not increase androgen release at 0 h but had a concentration-dependent effect at 3, 24, and 48 h of culture, with maximal effects at 24 h. LH stimulated high increases in production of cAMP and androgen by the cells at 0-24 h of culture. Leydig cell beta-receptors decreased with culture time. Low concentrations but not high levels of LH had additive effects with ISOP on androgen release. ISOP showed a complex interaction with LHRHa on androgen release. Chronic exposure of Leydig cells to LHRHa reduced basal androgen release as well as release of androgen stimulated by ISOP, forskolin, and LH. These studies suggest that the development of response to CA by rat Leydig cells is a postreceptor, postcAMP event and showed that CA can interact with LH or LHRH to regulate Leydig cell function.  相似文献   

6.
Prenatal androgen treatment can alter LH secretion in female offspring, often with adverse effects on ovulatory function. However, female spotted hyenas (Crocuta crocuta), renowned for their highly masculinized genitalia, are naturally exposed to high androgen levels in utero. To determine whether LH secretion in spotted hyenas is affected by prenatal androgens, we treated pregnant hyenas with antiandrogens (flutamide and finasteride). Later, adult offspring of the antiandrogen-treated (AA) mothers underwent a GnRH challenge to identify sex differences in the LH response and to assess the effects of prenatal antiandrogen treatment. We further considered the effects of blocking prenatal androgens on plasma sex steroid concentrations. To account for potential differences in the reproductive state of females, we suppressed endogenous hormone levels with a long-acting GnRH agonist (GnRHa) and then measured plasma androgens after an hCG challenge. Plasma concentrations of LH were sexually dimorphic in spotted hyenas, with females displaying higher levels than males. Prenatal antiandrogen treatment also significantly altered the LH response to GnRH. Plasma estradiol concentration was higher in AA-females, whereas testosterone and androstenedione levels tended to be lower. This trend toward lower androgen levels disappeared after GnRHa suppression and hCG challenge. In males, prenatal antiandrogen treatment had long-lasting effects on circulating androgens: AA-males had lower T levels than control males. The sex differences and effects of prenatal antiandrogens on LH secretion suggest that the anterior pituitary gland of the female spotted hyena is partially masculinized by the high androgen levels that normally occur during development, without adverse effects on ovulatory function.  相似文献   

7.
LH controls Leydig cell steroidogenesis by interaction with specific membrane receptors initiating membrane coupling events. Stimulation of the androgen pathways occurs mainly through cAMP mediated mechanism including LH induced guanyl nucleotide binding, membrane phosphorylation and adenylate cyclase activation. cAMP dependent kinase activation presumably causes phosphorylation of key proteins of the steroidogenic pathway and consequent increase in testosterone production. The hormone also appears to facilitate the androgen stimulus by a cyclic AMP independent mechanism located at the plasma membrane or intracellular sites. The stimulatory event can be negatively influenced by the action of certain peptide hormones (i.e. angiotensin II) through the guanyl nucleotide inhibitory subunit of adenylate cyclase (Gi). In recent studies we have presented evidence for a Ca2+ sensitive kinase system present in purified cell membranes. Gpp(NH)p, GTP, and phospholipid in presence of nanomolar Ca2+ induce phosphate incorporation into Mr 44,500 substrate with marked inhibition at microM Ca2+. Similarly a biphasic pattern of activation was observed with adenylate cyclase activity. Membrane phosphorylation may be a modifier of LH-stimulated adenylate cyclase activity and possibly other LH induced actions in the activated Leydig cell membrane. Furthermore we have defined the stimulatory effects of forskolin on all Leydig cell cyclic AMP pools and have provided additional evidence of functional compartmentalization and/or cAMP independent facilitory stimulus of steroidogenesis by the trophic hormone. The demonstration of a novel high affinity inhibitory action of forskolin upon adenylate cyclase activity and cyclic AMP generation mediated by the Gi subunit of adenylate cyclase has provided a new approach for direct evaluation of functional inhibitory influence of Gi subunit in the Leydig cell. The cultured fetal Leydig cell system has provided a useful model to elucidate mechanisms involved in the development of gonadotropin induced estradiol mediated desensitization of steroidogenesis. We have isolated from the fetal testis a small population (2-5% of total) of transitional cells with morphological characteristics of cells found in 15 day postnatal testis but functional capabilities of the adult cell. We have also demonstrated after appropriate treatment (i.e. estrogen, and frequent or a high gonadotropin dose) the emergence of a functional adult-like cell type from the fetal Leydig cell population.  相似文献   

8.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

9.
The release of arachidonic acid by luteinizing hormone (LH) and the effects of inhibiting phospholipase A2 (PLA2) in vivo and in vitro on LH stimulated steroidogenesis in rat testis Leydig cells has been investigated. It was found that arachidonic acid is rapidly incorporated into phospholipids and is released within 1 min after addition of LH. The effects of treating adult rats with dexamethasone and human chorionic gonadotropin (hCG) in vivo on steroidogenesis and prostaglandin synthesis in Leydig cells isolated 6 h later were determined. It was found that hCG caused a marked increase in prostaglandin F2 alpha formation which was inhibited by treatment with dexamethasone. LH-stimulated testosterone production was inhibited in the hCG treated rats and dexamethasone caused a further decrease. Treatment with dexamethasone alone also caused a decrease in the response to LH. HCG, but not dexamethasone, had similar inhibitory effects on LH-stimulated cyclic AMP production. Similarly, the PLA2 inhibitors quinacrine, dexamethasone and corticosterone, added to the Leydig cells in vitro, inhibited LH-stimulated testosterone production but not cyclic AMP production. 11-Dehydrocorticosterone also inhibited LH-stimulated testosterone production, but higher concentrations were required to give 50% inhibition compared to corticosterone (50 and 25 microM, respectively). Ring A-reduced metabolites of corticosterone and progesterone were also found to inhibit LH-stimulated steroidogenesis. The results obtained in this and previous studies are consistent with the activation of PLA2, (either directly by LH and/or via cyclic AMP), which results in the release of arachidonic acid and the formation of leukotrienes, which stimulate steroidogenesis in the Leydig cell. This study also indicates that corticosteroids and their metabolites may exert inhibitory effects at other sites in the steroidogenic pathways, in addition to PLA2.  相似文献   

10.
The results of our recent studies on purified rat Leydig cells indicate that there are no major qualitative differences in the stimulating effects of LH and LHRH agonists on steroidogenesis via mechanisms that are dependent on calcium. This was demonstrated by using inhibitors of calmodulin and the lipoxygenase pathways of arachidonic acid metabolism. Using the fluorescent indicator quin-2, it was shown that LH and LHRH agonist increase intracellular calcium levels; LH was more potent than LHRH agonist (max increase in concentrations obtained were 500 nM and 60 nM respectively). This difference was probably the result of a direct effect of cyclic AMP (whose production is stimulated by LH but not by LHRH) because cyclic AMP analogues were as potent as LH in increasing calcium levels. These studies indicate a major role for calcium in the control of steroidogenesis in testis Leydig cells.  相似文献   

11.
Desensitization of pituitary gonadotropes by exposure to 10 nM gonadotropin-releasing hormone (GnRH) for 6 h severely impaired the luteinizing hormone (LH) response to a second 3-h treatment with GnRH, and reduced the secretory responses to 50 microM arachidonic acid (AA), 100 nM tetradecanoyl phorbol-13-acetate (TPA), and AA + TPA. Pretreatment with AA blocked subsequent responses to AA but not to other secretagogues. Pretreatment with TPA attenuated the LH response to TPA, but not to GnRH, AA, and AA + TPA. After exposure to AA + TPA, all subsequent responses were abolished. Each of the secretagogues reduced GnRH receptor binding, but only GnRH-induced receptor loss and desensitization were reversed by simultaneous incubation with a GnRH antagonist. Similar results were obtained when 16-h pretreatment periods were used, or when the data were normalized for the concomitant reduction of cellular LH content. These findings indicate that GnRH-receptor loss and depletion of LH content are not the sole causes of GnRH-induced desensitization. Receptor uncoupling and impairment of AA- and protein kinase C-dependent pathways may also be involved in this process.  相似文献   

12.
We studied the effects of 12 adenosine analogs which are active as antiviral agents on basal and LH-stimulated steroidogenesis in Leydig cells. It is shown that several of these analogs markedly stimulate the production of androgens and androgen precursors in the absence of LH. These effects are observed in interstitial cell cultures derived from immature rats as well as in freshly prepared Percoll-purified Leydig cells derived from adult mice. Some compounds (neplanocin A, S-isobutyladenosine) are active from a concentration of 10(-6) M on. In the presence of maximally effective concentrations of LH or dbcAMP the stimulatory effects disappear and some compounds even become inhibitory. Only within the neplanocin series of derivatives did we observe a correlation between antiviral and steroidogenic activity. Four representative test compounds were studied in more detail: neplanocin A, 7-deazaadenosine, 4'-thioadenosine and S-isobutyladenosine. The first three significantly inhibit phospholipid N-methyltransferase activity in intact Leydig cells. However, our data do not suggest a close link between phospholipid methylation and the stimulatory or inhibitory effects of these test compounds on steroidogenesis. In cultured rat interstitial cells neplanocin A, S-isobutyladenosine and in particular 4'-thioadenosine markedly stimulate the production of cAMP. This effect is probably mediated via adenosine (A2) receptors which are known to appear in such cultures. Comparable effects are not observed in freshly prepared mouse Leydig cells. Again, however, there is no obvious correlation between the ability of the test compounds to stimulate cAMP production and their effects on steroidogenesis. It is concluded that compounds to stimulate cAMP production and their effects on steroidogenesis. It is concluded that antiviral adenosine analogs have complex effects on Leydig cell steroidogenesis. There may not be a unifying mechanism of action underlying the various biological effects of these agonists.  相似文献   

13.
Exposure of rodents to phthalates is associated with developmental and reproductive anomalies, and there is concern that these compounds may be causing adverse effects on human reproductive health. Testosterone (T), secreted almost exclusively by Leydig cells in the testis, is the primary steroid hormone that maintains male fertility. Leydig cell T biosynthesis is regulated by the pituitary gonadotropin LH. Herein, experiments were conducted to investigate the ability of di(2-ethylhexyl)phthalate (DEHP) to affect Leydig cell androgen biosynthesis. Pregnant dams were gavaged with 100 mg(-1) kg(-1) day(-1) DEHP from Gestation Days 12 to 21. Serum T and LH levels were significantly reduced in male offspring, compared to control, at 21 and 35 days of age. However, these inhibitory effects were no longer apparent at 90 days. In a second set of experiments, prepubertal rats, from 21 or 35 days of age, were gavaged with 0, 1, 10, 100, or 200 mg(-1) kg(-1) day(-1) DEHP for 14 days. This exposure paradigm affected Leydig cell steroidogenesis. For example, exposure of rats to 200 mg(-1) kg(-1) day(-1) DEHP caused a 77% decrease in the activity of the steroidogenic enzyme 17beta-hydroxysteroid dehydrogenase, and reduced Leydig cell T production to 50% of control. Paradoxically, extending the period of DEHP exposure to 28 days (Postnatal Days 21-48) resulted in significant increases in Leydig cell T production capacity and in serum LH levels. The no-observed-effect-level and lowest-observed-effect-level were determined to be 1 mg(-1) kg(-1) day(-1) and 10 mg(-1) kg(-1) day(-1), respectively. In contrast to observations in prepubertal rats, exposure of young adult rats by gavage to 0, 1, 10, 100, or 200 mg(-1) kg(-1) day(-1) DEHP for 28 days (Postnatal Days 62-89) induced no detectable changes in androgen biosynthesis. In conclusion, data from this study show that DEHP effects on Leydig cell steroidogenesis are influenced by the stage of development at exposure and may occur through modulation of T-biosynthetic enzyme activity and serum LH levels.  相似文献   

14.
We have investigated the stimulation of phospholipase D activity by the gonadotropin-releasing hormone receptor agonist [D-Ala6, des-Gly10]GnRH N-ethylamide (GnRH-A) in preovulatory, cultured granulosa cells. GnRH-A stimulated up to 10-fold accumulation of phosphatidylethanol, produced by phospholipase D phosphatidyl transferase activity when ethanol acts as the phosphatidyl group acceptor. The effect of GnRH-A was concentration dependent (EC50 = 1 nM) and was inhibited by a specific GnRH receptor antagonist. Low GnRH-A concentrations (less than 10 nM) stimulated also accumulation of phosphatidic acid, but at higher concentrations this response was attenuated. Propranolol, which inhibits phosphatidic acid phosphohydrolase, increased both basal and GnRH-A-stimulated production of phosphatidic acid. A protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA, 100 nM), increased up to 30-fold phosphatidylethanol levels. The effects of supramaximal concentrations of GnRH-A (50 nM) and TPA (1 microM) on the accumulation of phosphatidylethanol were additive, suggesting that the two agents may not act via the same mechanism. This is supported by the fact that 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, a protein kinase C inhibitor, inhibited the effect of TPA 50%, but not that of GnRH-A. However, 24 h pretreatment with TPA abolished cellular response to subsequent treatment with either TPA or GnRH-A. The stimulatory action of GnRH on steroidogenesis could be mimicked by elevating endogenous phosphatidic acid levels in granulosa cells. Exogenous phospholipase D (from Streptomyces chromofuscus, 10 IU/ml) significantly increased (2.7-fold) progesterone production by the cells; under the same conditions, GnRH-A and FSH stimulated progesterone production 3- and 2.6-fold, respectively. Similarly, propranolol stimulated progesterone production 2.2-fold. These results suggest that, in granulosa cells, GnRH receptors are coupled to a phospholipase D whose activation may participate in transducing the GnRH signal for accelerated steroidogenesis. Phospholipase D activity can be independently regulated also by protein kinase C. The possible interrelationships between phospholipase D and other phospholipases which may be activated by GnRH in these ovarian cells are discussed.  相似文献   

15.
A Leydig cell culture system has been used to study the in vitro modulation by luteinizing hormone (LH) of steroidogenesis in Leydig cells isolated from mice and immature rats. Mouse Leydig cells precultured for 24 h in the presence of increasing concentrations of LH (1 ng-1 microgram/ml) showed a dose-dependent decrease of the maximal LH-stimulated testosterone production. After pretreatment with 1 microgram LH/ml, maximal LH-stimulated testosterone production. After production in the presence of excess 20 alpha-hydroxycholesterol (a cholesterol side-chain cleavage substrate) were reduced to approx. 50% of control values. The possible site of action of LH is probably prior to pregnenolone, because testosterone production in the presence of excess pregnenolone was not affected by the LH pretreatment. Immature rat Leydig cells showed no decrease of maximal steroid production after 24 h culture in the presence of 1 microgram LH/ml. These results indicate that the regulation of the cholesterol side-chain cleavage activity during long-term LH action is different in mouse and rat Leydig cells. The properties of the cholesterol side-chain cleavage enzyme in mouse and rat Leydig cells were further investigated with different hydroxylated cholesterol derivatives as substrates. Steroid production by mouse Leydig cells in the presence of (22R)-22 hydroxycholesterol was similar as in the presence of LH. In contrast, steroidogenesis in rat Leydig cells in the presence of (22R)-22 hydroxycholesterol was at least 10-fold higher than in the presence of LH. It is concluded that the cholesterol side-chain cleaving enzyme in the mouse Leydig cell operates at its maximal capacity during short-term LH stimulation and can be inhibited after long-term LH action, whereas in the rat Leydig cell only a fraction of the potential activity is used during short-term LH stimulation, which is not affected during long-term LH action.  相似文献   

16.
Leydig cells are the primary source of androgens in the mammalian testis. It is established that the luteinizing hormone (LH) produced by the anterior pituitary is required to maintain the structure and function of the Leydig cells in the postnatal testis. Until recent years, a role by the thyroid hormones on Leydig cells was not documented. It is evident now that thyroid hormones perform many functions in Leydig cells. For the process of postnatal Leydig cell differentiation, thyroid hormones are crucial. Thyroid hormones acutely stimulate Leydig cell steroidogenesis. Thyroid hormones cause proliferation of the cytoplasmic organelle peroxisome and stimulate the production of steroidogenic acute regulatory protein (StAR) and StAR mRNA in Leydig cells; both peroxisomes and StAR are linked with the transport of cholesterol, the obligatory intermediate in steroid hormone biosynthesis, into mitochondria. The presence of thyroid hormone receptors in Leydig cells and other cell types of the Leydig lineage is an issue that needs to be fully addressed in future studies. As thyroid hormones regulate many functions of Sertoli cells and the Sertoli cells regulate certain functions of Leydig cells, effects of thyroid hormones on Leydig cells mediated via the Sertoli cells are also reviewed in this paper. Additionally, out of all cell types in the testis, the thyrotropin releasing hormone (TRH), TRH mRNA and TRH receptor are present exclusively in Leydig cells. However, whether Leydig cells have a regulatory role on the hypothalamo-pituitary-thyroid axis is currently unknown.  相似文献   

17.
The induction of luteinizing hormone (LH) receptors was studied in granulosa cells prepared from the ovaries of hypophysectomized diethylstilbestrol-treated immature rats. Incubation of granulosa cells for 48 h with increasing concentrations of follicle-stimulating hormone (FSH) or choleragen caused parallel rises in cAMP levels and LH receptors. These observations, with the finding that 8-Bromo-cAMP also induced LH receptor formation, indicate that hormonal stimulation of LH binding sites is mediated by cAMP. Peptide hormones that inhibited FSH-stimulated cAMP production, such as epidermal growth factor (EGF) and a gonadotropin-releasing hormone agonist (GnRHa), also prevented LH receptor formation. GnRHa and EGF had negligible effects on FSH-stimulated cAMP production from 0 to 24 h of culture, but reduced cAMP accumulation by 80% and 90%, respectively, from 24 to 48 h when the majority of LH receptors appeared. FSH-sensitive adenylate cyclase activity, as measured by the conversion of (3H)-ATP to (3H)-cAMP, was inhibited by GnRHa and EGF at 48 h of culture. EGF and GnRHa also reversed the inhibition of ectophosphodiesterase activity caused by FSH in granulosa cells between 48 and 72 h of culture. Both EGF and GnRHa inhibited induction of LH receptors by 8-Bromo-cAMP, suggesting that their effects are also on cAMP action. Addition of GnRHa, but not EGF, between 36 and 48 h of culture completely prevented further increases in LH receptors induced by 8-Bromo-cAMP, indicating that the inhibitory action of GnRHa can be initiated at later times during granulosa cell differentiation, whereas full expression of EGF action requires a longer period. These results demonstrate that EGF and GnRH inhibit FSH-induced LH receptor formation in the granulosa cell by reducing hormone-dependent cAMP production and also by impairing the ability of cAMP to stimulate LH receptor formation.  相似文献   

18.
The effects of weekly injections of a gonadotropin-releasing hormone (GnRH) antagonist (GnRHa) ([N-acetyl-DβNal1-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8D-Ala10] NH2 GnRH) on pituitary and ovarian function were examined in the marmoset monkey, Callithrix jacchus. In experiment 1, five cyclic females were given weekly injections of vehicle (50% propylene glycol in saline) for 6 weeks followed by GnRHa for 20 weeks, animals receiving either 200 μg GnRHa/injection (n = 2) or 67 μg GnRHa/injection (n = 3) for 10 weeks, after which the treatment was reversed. Bioactive luteinizing hormone (LH) and progesterone (Po) were measured in blood samples (0.2–0.4 ml) collected twice weekly until at least 8 weeks after the last GnRHa injection. GnRHa treatment, timed to begin in the midluteal phase, caused a rapid decline in LH and Po and luteal regression after a single injection (both doses). Po levels were consistently low (<10 ng/ml), and ovulation was inhibited throughout 200 μg treatment in all animals. Short periods of elevated Po (>10 ng/ml) were, however, occasionally seen during 67 μg treatment, indicating incomplete ovarian suppression. Mean LH levels were significantly lower during GnRHa treatment compared with the period of vehicle injection (all animals 200 μg; three animals 67 μg), and there were significant differences in LH levels between GnRHa treatments (200 μg vs. 67 μg) in four animals. Four animals resumed normal ovarian cycles after the end of GnRHa treatment (15/16 days, three animals; 59 days, one animal); the fifth animal died of unknown causes 32 days after the last GnRHa injection. In a second experiment, pituitary responsiveness to exogenous GnRH was tested 1 day after a single injection of vehicle or antagonist (200 or 67 μg). Measurement of bioactive LH indicated that pituitary response to 200 ng native GnRH was significantly suppressed in animals receiving the antagonist, the degree of suppression being dose related. A third experiment examined the effect of four weekly injections of 200 μg GnRHa on follicular size and granulosa cell responsiveness to human follicle-stimulating hormone (hFSH) in vitro. Follicular development beyond 1 mm was inhibited by GnRHa treatment (preovulatory follicles normally 2-4 mm) although granulosa cell responsiveness to FSH during 48 hr of culture was not impaired. These results suggest that the GnRHa-induced suppression of follicular development and ovulation was mediated primarily by an inhibition of pituitary gonadotropin secretion and not by a direct action at the level of the ovary.  相似文献   

19.
Testosterone (Te) concentrations fall gradually in healthy aging men. Postulated mechanisms include relative failure of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and/or gonadal Te secretion. Available methods to test Leydig cell Te production include pharmacological stimulation with human chorionic gonadotropin (hCG). We reasoned that physiological lutropic signaling could be mimicked by pulsatile infusion of recombinant human (rh) LH during acute suppression of LH secretion. To this end, we studied eight young (ages 19-30 yr) and seven older (ages 61-73 yr) men in an experimental paradigm comprising 1) inhibition of overnight LH secretion with a potent selective GnRH-receptor antagonist (ganirelix, 2 mg sc), 2) intravenous infusion of consecutive pulses of rh LH (50 IU every 2 h), and 3) chemiluminometric assay of LH and Te concentrations sampled every 10 min for 26 h. Statistical analyses revealed that 1) ganirelix suppressed LH and Te equally (> 75% median inhibition) in young and older men, 2) infused LH pulse profiles did not differ by age, and 3) successive intravenous pulses of rh LH increased concentrations of free Te (ng/dl) to 4.6 +/- 0.38 (young) and 2.1 +/- 0.14 (older; P < 0.001) and bioavailable Te (ng/dl) to 337 +/- 20 (young) and 209 +/- 16 (older; P = 0.002). Thus controlled pulsatile rh LH drive that emulates physiological LH pulses unmasks significant impairment of short-term Leydig cell steroidogenesis in aging men. Whether more prolonged pulsatile LH stimulation would normalize this inferred defect is unknown.  相似文献   

20.
Luteinizing hormone is the major regulator of Leydig cell differentiation and steroidogenic function. A number of hormones produced by the Leydig cell (e.g. estrogen, angiotensin, CRF, vasopressin) and the tubular compartment (inhibin, TGF beta), can influence both acute and long-term actions of LH. Conversely, hormones produced in the Leydig cells modulate tubular function (e.g. androgen, beta-endorphin, oxytocin). The LH stimulatory event can be negatively influenced by the action of angiotensin II through the guanyl nucleotide inhibitory unit of adenylate cyclase. We have recently discovered an action of corticotrophin releasing hormone through specific high-affinity low-capacity receptors in the Leydig cells which involves a pertussis toxin insensitive guanyl nucleotide regulatory unit with interaction between signalling pathways and resulting inhibition of LH induced cAMP generation and consequently of steroidogenesis. In contrast to other tissues the CRF receptor in the Leydig cells did not couple to Gs. CRF action is exerted through direct or indirect action of protein kinase C, at the level of the catalytic subunit of adenylate cyclase. Physiological increases in endogenous LH cause positive regulation of membrane receptors and steroidogenesis, while major elevations in circulating gonadotropin can induce down-regulation of LH receptors and desensitization of steroid responses in the adult cell. Gonadotropin-induced desensitization in adult rat tests include an estrogen mediated steroidogenic lesion of the microsomal enzymes 17 alpha-hydroxylase/17,20-desmolase. For further understanding of the regulation of this key enzyme of the androgen pathway the rat P450(17) alpha cDNA was cloned and sequenced. This cDNA expressed in COS-1 cells 17 alpha-hydroxylase/17,20-desmolase activities. From the deduced amino acid sequence, two transmembrane regions were identified, a signal peptide for insertion in the ER, and a 2nd transmembrane region separated from the first by 122 amino acids. The carboxy terminal non-transmembrane region possesses 4 hydrophobic clefts, of which cleft II would contain the putative steroid binding site for both hydroxylase and lyase activities. The rat cDNA was employed to evaluate the hormonal regulation of mRNA levels in adult and fetal Leydig cells. Low dose hCG treatment caused an early increase in mRNA levels followed by a return to control values at later times, while with higher desensitizing doses the initial increase in mRNA was followed by a marked reduction in mRNA at 24 h and a small recovery at 48 h. Fetal rat Leydig cells treated with E2 showed a 70% decrease in P450 mRNA levels, and testosterone production closely followed the changes in mRNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号