首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharide (LPS) induces a release of tumor necrosis factor (TNF)-alpha, endothelin (ET)-1, interleukin (IL)-1alpha, IL-6 and IL-10 in rat liver macrophages (Kupffer cells). Prostaglandin (PG)E2 inhibits the release of the fibrogenic mediators TNF-alpha, ET-1 and IL-1alpha, and enhances the release of the anti-fibrogenic mediators IL-6 and IL-10. This effect of PGE2 is mimicked by specific agonists for the PGE2 receptors EP2 and EP4; whereas, agonists for the PGE2 receptors EP1 and EP3 are inactive. Rat liver macrophages express mRNA encoding the PGE2 receptors EP2 and EP4 but not the PGE2 receptors EP1 and EP3. These data suggest that PGE2 exerts its anti-fibrogenic effect through the EP2 and EP4 receptor by inhibiting the release of the fibrogenic mediators TNF-alpha, ET-1 and IL-1alpha, and by enhancing the release of the anti-fibrogenic mediators IL-6 and IL-10 in liver macrophages.  相似文献   

2.
We investigated the role of sigma receptors in the expression of behavioral sensitization induced by cocaine. Rats received intraperitoneal injections of either 20 mg/kg cocaine or saline once daily for 14 consecutive days. Cocaine-treated rats became sensitized. After a 5-day abstinence period, a challenge dose of (+)-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine ((+)-3-PPP), a sigma receptor agonist, was administered. (+)-3-PPP at doses of 12 and 24 mg/kg induced significantly more frequent rearing and more potent stereotypy consisting of repetitive head movement and sniffing in cocaine-sensitized rats than in saline-pretreated rats. These enhanced responses to (+)-3-PPP lasted for at least a month. The enhanced responses to (+)-3-PPP were attenuated by 30 mg/kg BMY 14802, a putative sigma antagonist, and also attenuated by 100 mg/kg (+/-)-sulpiride, a D2 dopamine antagonist. These findings show that repeated administration of cocaine produces lasting supersensitivity of simga receptors, which may induce subsequent activation of dopaminergic transmission.  相似文献   

3.
Interleukin-24 (IL-24), a member of the IL-10 cytokine family, is an immunomodulatory cytokine that also displays broad cancer-specific suppressor effects. The tumor suppressor activities of IL-24 include inhibition of angiogenesis, sensitization to chemotherapy, and cancer-specific apoptosis. We show that Sigma 1 Receptor (S1R), a ligand-regulated protein chaperone contributes to IL-24 induction of apoptosis. IL-24 generated from an adenovirus expressing IL-24 (Ad.IL-24) induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress, reactive oxygen species production, and calcium mobilization. The present studies reveals that S1R is required for Ad.IL-24-induced cell death. We provide several lines of evidence to confirm a physical and functional interaction between IL-24 and S1R including: (a) S1R and IL-24 co-localize, as judged by immunocytochemical analysis studies; (b) S1R and IL-24 co-immunoprecipitate using either S1R or IL-24 antibody; (c) S1R agonist (+)-SKF10047 inhibits apoptosis by Ad.IL-24; (d) (+)-SKF10047-mediated inhibition of Ad.IL-24 results in: diminished ER stress protein expression; (e) Calcium mobilization; and (f) ROS production. Collectively, these data demonstrate that S1R interacts with IL-24 and suggest that IL-24:S1R interaction determines apoptosis induction by Ad.IL-24. These studies define Sigma 1 Receptor as a key initial mediator of IL-24 induction of cancer-specific killing. These findings have important implications for our understanding of IL-24 as a tumor suppressor protein as well as an immune modulating cytokine.  相似文献   

4.
Active immunotherapy and cancer vaccines that promote host antitumor immune responses promise to be effective and less toxic alternatives to current cytotoxic drugs for the treatment of cancer. However, the success of tumor immunotherapeutics and vaccines is dependent on identifying approaches for circumventing the immunosuppressive effects of regulatory T (Treg) cells induced by the growing tumor and by immunotherapeutic molecules, including Toll-like receptor (TLR) agonists. Here, we show that tumors secrete high concentrations of active TGF-β1, a cytokine that can convert naive T cells into Foxp3+ Treg cells. Silencing TGF-β1 mRNA using small interfering RNA (siRNA) in tumor cells inhibited active TGF-β1 production in vitro and restrained their growth in vivo. Prophylactic but not therapeutic administration of TGF-β1 siRNA reduced the growth of CT26 tumors in vivo. Furthermore, suppressing TGF-β1 expression at the site of a tumor, using siRNA before, during and after therapeutic administration of a TLR-activated antigen-pulsed dendritic cell vaccine significantly reduced the growth of B16 melanoma in mice. The protective effect of co-administering TGF-β1 siRNA with the DC vaccine was associated with suppression of CD25+Foxp3+ and CD25+IL-10+ T cells and enhancement of tumor infiltrating CD4 and CD8 T cells. Our findings suggest that transient suppression of TGF-β1 may be a promising approach for enhancing the efficacy of tumor vaccines in humans.  相似文献   

5.
Data acquired to date show that some sigma receptor ligands reveal "antidepressant-like" activity in the forced swim test in mice and rats. Moreover, our preliminary results suggested that joint administration of sigma receptor ligands and amantadine (AMA, a glutamatergic/NMDA receptor antagonist) caused a positive interaction in the Porsolt test in rats, as had already been observed in the case of co-treatment with clinically active antidepressants and AMA. The aim of the present study was to examine the effect of combined administration of sigma1 or sigma2 receptor agonists, SA4503 or siramesine, respectively, and AMA or memantine (MEM) (uncompetitive NMDA receptor antagonist). SA4503 or siramesine given jointly with MEM (as well as with AMA) decreased the immobility time in rats. The effect of SA4503 and AMA co-administration was antagonized by progesterone, a sigma1 receptor antagonistic neurosteroid. Combined treatment with siramesine and AMA was modified by neither progesterone nor BD1047 (a novel sigma antagonist with preferential affinity for sigma1 sites); but it was counteracted by sulpiride and prazosin (a dopamine D2- and an alpha1-adrenergic receptor antagonist, respectively). The "antidepressant-like" effect induced by siramesine and MEM was not antagonized by progesterone, but was attenuated by BD1047, sulpiride and prazosin. The obtained results give support to the hypothesis that sigma (particularly sigma1) receptors may be one of the possible mechanisms by which drugs induce antidepressant-like activity in the forced swim test, and that this effect may be enhanced by NMDA receptor antagonists. Combined treatment with sigma ligands and AMA or MEM (applied in the clinic) may be an alternative to the treatment of antidepressant-resistant depressive patients in the future.  相似文献   

6.
Sigma receptors once considered as a class of opioid receptors are now regarded as unique orphan receptors, distinguished by the ability to bind various pharmacological agents such as the progesterone (steroid), haloperidol (anti-psychotic), and drugs of abuse such as cocaine and methamphetamine. The sigma-1 receptor is a 223 amino acid protein, proposed to have two transmembrane segments. We have developed a scheme for the purification of the guinea pig sigma-1 receptor following overexpression in Escherichia coli as a maltose binding protein (MBP) fusion and extraction with Triton X-100. Affinity chromatography using an amylose column and Ni2+ affinity column was used to purify the sigma-1 receptor. The sigma-1 receptor purified by this method is a 26 kDa polypeptide as assessed by SDS-PAGE, binds sigma ligands with high affinity and can be specifically photoaffinity labeled with the sigma-1 receptor photoprobe, [125I]-iodoazidococaine. Ligand binding using [3H]-(+)-pentazocine indicated that approximately half of the purified protein in Triton X-100 bound to radioligand. The MBP-sigma-1 receptor and the sigma-1 receptor in 0.5% triton were maximally stable for approximately two weeks at -20 degrees C in buffer containing 30% glycerol.  相似文献   

7.
The proinflammatory cytokine interleukin-1beta (IL-1beta) influences neuroendocrine activity and produces other effects, including fever and behavioral changes such as anxiety. The melanocortin neuropeptides, such as alpha-melanocyte-stimulating hormone (alpha-MSH), antagonize many actions of IL-1, including fever, anorexia and hypothalamic-pituitary-adrenal (HPA) axis activation through specific melanocortin receptors (MC-R) in the central nervous system. The objective of the present study was to establish the effect of MSH peptides on IL-1beta-induced anxiety-like behavior and the melanocortin receptors involved. We evaluated the effects of intracerebroventricular (i.c.v.) administration of IL-1beta (30 ng) and melanocortin receptor agonists: alpha-MSH, an MC3/MC4-R agonist (0.2 microg) or gamma-MSH, an MC3-R agonist (2 microg) or HS014, an MC4-R antagonist (2 microg), on an elevated plus-maze (EPM) test. Injection of IL-1beta induced an anxiogenic-like response, as indicated by reduced open arms entries and time spent on open arms. The administration of alpha-MSH reversed IL-1beta-induced anxiety with co-administration of HS014 inhibiting the effect of alpha-MSH. However, the associated treatment with gamma-MSH did not affect the anxiety response to IL-1beta. These data suggest that alpha-MSH, through central MC4-R can modulate the anxiety-like behavior induced by IL-1beta.  相似文献   

8.
Members of the interleukin-1 (IL-1) family of cytokines are key mediators in the regulation of host defence responses and the development of inflammation in response to acute and chronic injury to the brain. Two major agonists, IL-1alpha and IL-1beta, bind to a membrane receptor complex composed of the type-1 IL-1 receptor (IL-1RI) and the accessory protein (IL-1RAcP). The discovery of new orphan members of the IL-1 receptor superfamily (including ST2/T1, IL-1Rrp2, TIGIRR1 and -2, SIGGIR, IL-18Ralpha and IL-18Rbeta) has increased speculation that alternative IL-1 ligands signalling pathways exist in the brain. We demonstrate here that all the IL-1R-like orphan receptors are expressed by many brain cell types including astrocytes, microglia, oligodendrocytic progenitor cells and neurons. IL-18Rbeta expression was significantly increased in response to treatment of mixed glia with bacterial lipopolysaccharide (LPS) in vitro, whereas expression of IL-1Rrp2 and TIGIRR1 was reduced. Furthermore, IL-18Rbeta, IL-1Rrp2, but not TIGIRR1 expression, was increased in the brain in vivo in response to peripheral administration of LPS or middle cerebral artery occlusion (MCA). These results suggest possible roles for newly identified members of the IL-1 receptor family in CNS diseases.  相似文献   

9.
Sigma receptors are Ca2+-sensitive, ligand-operated receptor chaperones at the mitochondrion-associated endoplasmic reticulum membrane. This study describes the effect of the sigma receptor 1 agonist pregnenolone sulfate on intraocular pressure (IOP) and sigma receptor 1 expression in rat retinas after chronic ocular hypertension. Chronic ocular hypertension was induced by occlusion of episcleral veins. Retinal histological sections were obtained to determine inner plexiform layer thickness and the number of cell bodies in the ganglion cell layer. Sigma receptor expression in rat retinas was analyzed by RT-PCR and Western blotting. Cauterization caused IOP to increase >73%, and the pressure was maintained for 2 months. A time-dependent loss of ganglion cells and retinal thickness occurred at elevated IOP. High IOP decreased sigma receptor 1 expression during the first week, but expression was increased at 8 weeks. Injected pregnenolone significantly decreased IOP, prevented ganglion cell loss, protected inner plexiform layer thickness, and increased sigma receptor 1 expression in episcleral vein-cauterized rats. Sigma receptors appear to be neuroprotective and potential targets for glaucoma therapeutics.  相似文献   

10.
11.
The sigma-1 receptor is an intracellular protein characterized as a tumor biomarker whose function remains mysterious. We demonstrate herein for the first time that highly selective sigma ligands inhibit volume-regulated chloride channels (VRCC) in small cell lung cancer and T-leukemia cells. Sigma ligands and VRCC blockers provoked a cell cycle arrest underlined by p27 accumulation. In stably sigma-1 receptor-transfected HEK cells, the proliferation rate was significantly lowered by sigma ligands when compared with control cells. Sigma ligands produced a strong inhibition of VRCC in HEK-transfected cells but not in control HEK. Surprisingly, the activation rate of VRCC was dramatically delayed in HEK-transfected cells in the absence of ligands, indicating that sigma-1 receptors per se modulate cell regulating volume processes in physiological conditions. Volume measurements in hypotonic conditions revealed indeed that the regulatory volume decrease was delayed in HEK-transfected cells and virtually abolished in the presence of igmesine in both HEK-transfected and T-leukemic cells. Moreover, HEK-transfected cells showed a significant resistance to staurosporine-induced apoptosis volume decrease, indicating that sigma-1 receptors protect cancer cells from apoptosis. Altogether, our results show for the first time that sigma-1 receptors modulate "cell destiny" through VRCC and cell volume regulation.  相似文献   

12.
Sigma1 receptor (sigma1R), a significant protein, has been found to be frequently upregulated in human tumor cells and tissues. It has been demonstrated that sigma1R is involved in proliferation and adhesion of cancer cells. However, the significance of sigma1R expression in esophageal squamous cell carcinoma (ESCC) remains unclear. In this article, by a series of methods, the authors examined the expression of sigma1R protein in ESCC cell lines and tissues. Flow cytometry indicated intense staining of sigma1R in ESCC cells. Immunocytochemistry staining demonstrated that sigma1R was mainly distributed in cytoplasm and nucleus in ESCC cell lines. Western blotting was performed to characterize the relative expression of sigma1R in different ESCC cell lines. Moreover, different levels of sigma1R were presented from normal epithelium to carcinoma by immunohistochemistry analysis, which demonstrated that sigma1R was highly expressed in tumors. Association analysis showed significant correlations between total sigma1R protein levels and pathologic TNM (pTNM) classification of tumors (r=0.216, p=0.011). Furthermore, the sigma1R in the nucleus was significantly correlated with pTNM classification and lymph node metastasis (r=0.263, p=0.002, and r=0.269, p=0.002, respectively). These data indicated that sigma1R may serve as a potential predictive factor for pTNM classification and tumor development in ESCC.  相似文献   

13.
Progressing tumors in humans and mice are frequently infiltrated by a highly heterogeneous population of inflammatory myeloid cells that contribute to tumor growth. Among these cells, inflammatory Gr-1(+) monocytes display a high developmental plasticity in response to specific microenvironmental signals, leading to diverse immune functions. These observations raise the question of the immune mechanisms by which inflammatory monocytes may contribute to tumor development. In this study, we found that adoptive transfer of normal inflammatory Gr-1(+) monocytes in tumor-bearing mice promotes tumor growth. In this tumoral environment, these monocytes can differentiate into tolerogenic dendritic cells (DCs) that produce IL-10 and potently induce regulatory T cell responses in vivo. Moreover, diverting the differentiation of Gr-1(+) monocytes into tolerogenic DCs by forced expression of IL-10 soluble receptor and IL-3 in tumor cells improves host immunosurveillance by reducing the regulatory T cell frequency and by inducing immunogenic DCs in the tumor. As a consequence, tumor growth is strongly reduced. Our findings indicate that Gr-1(+) monocytes represent a valuable target for innovative immunotherapeutic strategies against cancer.  相似文献   

14.
Gene therapy offers advantages for the immunotherapeutic delivery of cytokines or their inhibitors. After gene transfer, these mediators are produced at relatively constant, non-toxic levels and sometimes in a tissue-specific manner, obviating limitations of protein administration. Therapy with viral or nonviral vectors is effective in several animal models of autoimmunity including Type 1 diabetes mellitus (DM), experimental allergic encephalomyelitis (EAE), systemic lupus erythematosus (SLE), colitis, thyroiditis and various forms of arthritis. Genes encoding transforming growth factor beta, interleukin-4 (IL-4) and IL-10 are most frequently protective. Autoimmune/ inflammatory diseases are associated with excessive production of inflammatory cytokines such as IL-1, IL-12, tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma). Vectors encoding inhibitors of these cytokines, such as IL-1 receptor antagonist, soluble IL-1 receptors, IL-12p40, soluble TNFalpha receptors or IFNgamma-receptor/IgG-Fc fusion proteins are protective in models of either arthritis, Type 1 DM, SLE or EAE. We use intramuscular injection of naked plasmid DNA for cytokine or anticytokine therapy. Muscle tissue is accessible, expression is usually more persistent than elsewhere, transfection efficiency can be increased by low-voltage in vivo electroporation, vector administration is simple and the method is inexpensive. Plasmids do not induce neutralizing immunity allowing repeated administration, and are suitable for the treatment of chronic immunological diseases.  相似文献   

15.
Myelopoietins (MPOs) are a family of recombinant chimeric proteins that are both interleukin-3 (IL-3) receptor and granulocyte colony-stimulating factor (G-CSF) receptor agonists. In this study, MPO molecules containing one of three different IL-3 receptor agonists linked with a common G-CSF receptor agonist have been examined for their IL-3 receptor binding characteristics. Binding to the alpha-subunit of the IL-3 receptor revealed that the affinity of the MPO molecules was 1.7-3.4-fold less potent than those of their individual cognate IL-3 receptor agonists. The affinity decrease was reflected in the MPO chimeras having approximately 2-fold slower dissociation rates and 2.7-5.5-fold slower association rates than the corresponding specific IL-3 receptor agonists alone. The affinity of binding of the MPO molecules to the heteromultimeric alphabeta IL-3 receptor expressed on TF-1 cells was either 3-, 10-, or 42-fold less potent than that of the individual cognate IL-3 receptor agonist. Biophysical data from nuclear magnetic resonance, near-UV circular dichroism, dynamic light scattering, analytical ultracentrifugation, and size exclusion chromatography experiments determined that there were significant tertiary structural differences between the MPO molecules. These structural differences suggested that the IL-3 and G-CSF receptor agonist domains within the MPO chimera may perturb one another to varying degrees. Thus, the differential modulation of affinity observed in IL-3 receptor binding may be a direct result of the magnitude of these interdomain interactions.  相似文献   

16.
CD73 (ecto-5''-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in recently proposed anti-CD73 cancer therapy.  相似文献   

17.
Activation of the superoxide (O2-)-generating NADPH oxidase of phagocytes in a cell-free system by anionic amphiphiles requires the participation of both membrane and cytosolic components. We reported that ammonium sulfate fractionation (Pick, E., Kroizman, T., and Abo, A. (1989) J. Immunol. 143, 4180-4187) and affinity chromatography on 2',5'-ADP-agarose (Shaag, D., and Pick, E. (1990) Biochim. Biophys. Acta 1037, 405-412) permit separation of cytosol in two fractions (sigma 1 and sigma 2) that support O2- production by solubilized membrane synergistically. We now describe the purification of sigma 1 to near homogeneity and demonstrate that it represents a cytosolic component distinct from p47-phox and p67-phox, that are both found in fraction sigma 2. Sigma 1 was absolutely required for the full expression of amphiphile-activated NADPH-oxidase activity. This requirement was evident whether sigma 1 was added to cell-free systems composed of: (a) solubilized membrane and a sigma 2-enriched cytosolic fraction, or (b) purified cytochrome b559, incorporated in liposomes, and purified sigma 2. Sigma 1 was purified by a sequence comprising ammonium sulfate fractionation, hydrophobic chromatography on phenyl-Superose, absorption with CM-Sepharose, anion exchange chromatography on DEAE-Sepharose, and gel filtration on Superose 12. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of sigma 1 of maximal purity, under both reducing and nonreducing conditions, demonstrated the presence of two proteins, of 24 and 22 kDa. On gel filtration, sigma 1 was eluted as a symmetrical peak of 46 kDa that by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed the presence of both 24- and 22-kDa bands. We suggest that, in its native form, sigma 1 might represent a complex of the 24- and 22-kDa proteins. The specific roles of each molecule in NADPH oxidase function remain to be determined.  相似文献   

18.
Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions, including drug addiction, psychosis, and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids, including d-erythro-sphingosine, sphinganine, and N,N-dimethylsphingosine, bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran, S., et al. (2009) Eur. J. Pharmacol. 609, 19-26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the K(I) values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butylamine (1a and 1b, respectively), heptylamine (2a and 2b, respectively), dodecylamine (3a and 3b, respectively), and octadecylamine (4a and 4b, respectively) were evaluated as sigma receptor ligands, we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of high-affinity ligands 2a, 2b, 3a, and 3b against a variety of other receptors and/or transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK-293 cells reconstituted with K(v)1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel, consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a, and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anticancer agents.  相似文献   

19.
Sigma receptors are membrane-bound proteins that are overexpressed in certain human malignancies including breast cancer. These receptors show very high affinity for various sigma ligands including neuroleptics like haloperidol. We hypothesized that in associating haloperidol-linked lipid into the cationic lipid-DNA complex, we can specifically target and deliver genes to breast cancer cells that overexpress sigma receptors. In the present study, haloperidol was chemically modified to conjugate at the distal end of the polyethylene glycollinked phospholipid, which was then incorporated into the cationic liposome known to condense and deliver genes inside cells. The resulting haloperidol-conjugated targeted lipoplex showed at least 10-fold higher (p < 0.001) reporter gene expression in MCF-7 cells than control lipoplex. The reporter gene expression of the targeted lipoplex was significantly blocked by haloperidol (p < 0.001) and by another sigma ligand, 1,3-ditolylguanidine (p < 0.001) in the majority of cationic lipid to DNA charge ratios (+/-). Spironolactone-mediated sigma receptor down-regulation enabled MCF-7 to show 10-fold lower transgene expression with targeted lipoplex compared with that obtained in spironolactone-untreated cells. The targeted lipoplex generated nonspecific gene expression in sigma receptor-nonexpressing human cancer cells such as Hela, KB, HepG2, and Chinese hamster ovary cells. Moreover, the transgene expression remained unabated in physiologically relevant serum concentrations. This is the first study to demonstrate that haloperidol-targeted gene delivery systems can mediate efficient targeting of genes to sigma receptor-overexpressing breast cancer cells, thereby becoming a novel class of therapeutics for the treatment of human cancers.  相似文献   

20.
NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-alpha, and investigated the secretion of IFN-gamma, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-gamma was dependent on MEK1/ERK, p38 MAPK, p70(S6) kinase, and NF-kappaB, but not on calcineurin. IFN-alpha induced a similar effect, but promoted lesser IFN-gamma secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号