首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The evolutionary relationships among 13 species representing all six subgenera of the shrimp genusPenaeuswere examined using 558 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Analyses of this sequence revealed high genetic divergence between species (d = 8–24%), a finding which contrasts with previous work, which indicated that genetic diversity, based on electrophoretic analysis of allozymes, was extremely low inPenaeus.Three tree-building methods (maximum parsimony, neighbor joining, and maximum likelihood) were concordant in indicating that current subgenera assignments do not reflect evolutionary partitions within the genusPenaeus.While the molecular phylogenies cast doubt on the validity of subgenera, the observed relationships are concordant with biogeographic boundaries across the tropical range ofPenaeus.Both the western Atlantic and eastern Pacific contain monophyletic species pairs which cluster together in all analyses. The Indo-Pacific contains a putative basal taxa (P. indicus), the deepest mtDNA lineages, and the highest diversity, including representatives of all three primary lineages observed inPenaeus.These data are consistent with the suggestion by Dallet al.(1990) thatPenaeusarose in the Indo-Pacific and radiated eastward and westward to account for the current circumtropical distribution of the genus. This phylogenetic framework forPenaeuswill enhance the scientific foundations for wildlife resource management and breeding experiments (hybridization and related manipulations) designed to improve the commercial value of captive strains.  相似文献   

2.
有关对虾属(Penaeus)的设置及其相互亲缘关系一直是分类学争论的焦点,利用线粒体16S rRNA基因片段及COI基因片段序列分析的方法,以长臂虾科的脊尾白虾(Exopalaemon carinicauda)为外群,对对虾属的6亚属23种对虾进行了分子系统学研究。经ClustalX多重比对和MEGA4.0软件分析,得到种间序列的遗传距离并构建了最大简约(MP)系统树。结果表明:分子系统学数据支持Perez F等将对虾属的6个亚属提升为属级阶元的观点。囊对虾属的日本囊对虾(Marsupenaeus japonicus)和沟对虾属(Melicertus)的深沟对虾(Melicertus canaliculatus)之间的16S遗传距离只有0.007,而且COI遗传距离仅有0.065,比深沟对虾与同为沟对虾属的其他虾类遗传距离还小,说明囊对虾亚属(Marsupenaeus)和沟对虾亚属之间亲缘关系较近。另外美对虾亚属的褐美对虾(Farfantepenaeus aztec-us)和巴西美对虾(Farfantepenaeus brasiliensis)之间的16S rRNA基因序列遗传距离仅为0.012,但是与其他同亚属的虾类遗传距离相对较大,推测美对虾亚属(Farfantepenaeus)中的虾类根据亲缘关系远近和地理分布可以分为2大类群:墨西哥湾类群和南美洲类群。可以为对虾属的6个亚属的分类问题及演化提供一定的分子生物学依据。  相似文献   

3.
Phylogenetic relationships among 93 specimens of 22 species of seahorses (genus Hippocampus) from the Atlantic and Indo-Pacific Oceans were analysed using cytochrome b gene sequence data. A maximum sequence divergence of 23.2% (Kimura 2-parameter model) suggests a pre-Tethyan origin for the genus. Despite a greater number of seahorse species in the Indo-Pacific than in the Atlantic Ocean, there was no compelling genetic evidence to support an Indo-Pacific origin for the genus Hippocampus. The phylogenetic data suggest that high diversity in the Indo-Pacific results from speciation events dating from the Pleistocene to the Miocene, or earlier. Both vicariance and dispersal events in structuring the current global distribution of seahorses. The results suggested that several species designations need re-evaluating, and further phylogeographic studies are required to determine patterns and processes of seahorse dispersal.  相似文献   

4.
Halimeda (Bryopsidales), a genus of calcified, segmented green seaweeds, abounds in reefs and lagoons throughout the tropics. To investigate phylogenetic, phylogeographic, and historic ecological relationships of the genus, the nuclear rDNA including the SSU and both ITS regions were sequenced. A maximum likelihood tree revealed the following: (1) there were anatomical and morphological synapomorphies for five well-supported lineages; (2) the last common ancestor of one lineage invaded sandy substrata; those of two other lineages established in wave-affected habitats, whereas the cenancestor of the remaining two lineages occupied sheltered rocky slopes. Yet, several species adapted to new habitats subsequently, resulting in several cases of convergence; (3) all lineages separated into Atlantic and Indo-Pacific daughters, likely resulting from the rise of the Panamanian Isthmus. Each daughter pair gave rise to additional convergent species in similar habitats in different oceans; (4) Halimeda opuntia, the only monophyletic pantropical species detected so far, dispersed from the Indo-Pacific into the Atlantic well after the closure event; (5) minor SSU-sequence differences across species and phylogeographic patterns of vicariance indicated a relatively recent diversification of the extant diversity. Cretaceous and Early Tertiary fossil look-alikes of modern species must then have resulted from iterative convergence.  相似文献   

5.
Intra‐ and interspecific genetic diversity of the lizard species Plica plica (9 localities) and Plica umbra (19 localities) from the Brazilian Amazon was analysed using two mitochondrial (16S rDNA and CO1) and one nuclear (prolactin receptor – PRLR) genes. We generated a maximum‐likelihood and Bayesian hypotheses of phylogenetic relationships, and using the bPTP and ABGD lineage delimiting methods inferred the most likely number of lineages within each species. Both methods delimited five distinct lineages in Plica plica and six lineages within Plica umbra. The nominal subspecies of Plica umbra was comprised of one lineage, while Plica umbra ochrocollaris was comprised of five lineages. In majority of the cases, lineages were restricted to the interfluves of major Amazonian rivers, and different lineages occupied distinct areas of endemism. Phylogenetic relationships of the lineages are largely concordant with the hypothesized formation of the areas of endemism. The geographic structuring of the clades and the delimitation of these clades as distinct lineages suggest the possibility that these lineages represent species. If the observed diversity of lineages within the genus Plica is characteristic of squamate reptiles of the Amazon region, the diversity of squamates is grossly underestimated.  相似文献   

6.
Phylogenetic relationships and evolutionary patterns in the genus Barbus were examined through the analysis of the complete sequences of three mitochondrial genes: ATPases 8 and 6, which overlap slightly, and cytochrome b. This complex genus includes diploid as well as tetraploid and hexaploid species that are distributed throughout the Palaearctic, Ethiopian and Asiatic biogeographical regions. Given that genome duplication is an important evolutionary mechanism in eukaryotes, in the present report we attempt to describe its role in the evolution of the genus Barbus, as well as drawing systematic and phylogenetic conclusions. The phylogenetic results indicated the splitting of the current Barbus genus into five main mitochondrial lineages corresponding to (i) the genus Barbus sensu stricto (tetraploid, which is subdivided into the subgenera Barbus and Luciobarbus), (ii) the hexaploid species, (iii) the Ethiopian tetraploid species, (iv) the African diploid species, and (v) the Asian diploid species. The branching of 'foreign' genera as sister groups of some of these monophyletic assemblages (such as Aulopyge is to Barbus sensu stricto or Varicorhinus is to the hexaploid barbels) demonstrates the polyphyly of the group. Moreover, the relationships between the proposed lineages also show that genome duplication may be considered as a homoplasic character since it must have occurred over at least three independent periods and/or in three independent areas. In relation to the possible saltational evolutionary model for the polyploid species examined here, it was found that, although feasible at the nuclear level, the mitochondrial markers looked at do not appear to have undergone this type of evolution. Rather, they seem to have experienced more or less constant change through time.  相似文献   

7.
Mitochondrial DNA sequences were used to reconstruct the phylogeny of the Penaeus s.l. genus of marine shrimp. This phylogeny was used to test the validity of hypotheses on the species groupings, in particular the subgenus/genus subdivision, and on the species' evolutionary history. Newly derived sequences of both 16S rRNA and COI genes from 19 species of Penaeus s.l. and one outgroup were combined with previous sequences from seven additional species to allow analysis of 26 of the 28 recognised (or nominated) species. Phylogenetic analyses do not support the validity of all the previously created six subgenera (or genera) but provide evidence for division of the genus into two previously unrecognised clades (Melicertus+Marsupenaeus and Penaeus s.s.+Fenneropenaeus+Farfantepenaeus+Litopenaeus). A key conclusion from a previous molecular study, that the subgenera Farfantepenaeus and Litopenaeus are paraphyletic, was rejected. The molecular data support an Indo-West Pacific origin of the genus, with a single relatively recent colonisation of the Western Hemisphere, and subsequent subdivision into two clades prior to the emergence of the Panamanian isthmus.  相似文献   

8.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   

9.
Temporal origins of reef fishes in the Indo-Australian Archipelago were examined using wrasses in the genus Macropharyngodon. The genus was selected as it is morphologically and ecologically distinct, with strongly reef-associated species exhibiting discrete distributions across the Indo-Pacific. Phylogenetic relationships were explored using COI, 16S, and 12S rRNA mitochondrial sequences. Monophyly of the genus was supported by congruent Bayesian, maximum likelihood, and maximum parsimony trees. Estimates of lineage ages based on fossil-calibrated reef fish divergences suggest that Macropharyngodon had an extensive evolutionary history starting in the early Miocene. Repeated divergences of Indian Ocean-Pacific Ocean lineages appear to have occurred over at least 19 million years. Regional endemics represent both old and young clades. Our estimates of early Miocene origins, and mid-Miocene to Pliocene diversifications of Macropharyngodon are supported by recent studies of other reef fish genera, and emphasise the importance of pre-Pleistocene events in generating Indo-Pacific coral reef fish biodiversity.  相似文献   

10.
We examined how peripherally isolated endemic species may have contributed to the biodiversity of the Indo-Australian Archipelago biodiversity hotspot by reconstructing the evolutionary history of the wrasse genus Anampses. We identified three alternate models of diversification: the vicariance-based 'successive division' model, and the dispersal-based 'successive colonisation' and 'peripheral budding' models. The genus was well suited for this study given its relatively high proportion (42%) of endemic species, its reasonably low diversity (12 species), which permitted complete taxon sampling, and its widespread tropical Indo-Pacific distribution. Monophyly of the genus was strongly supported by three phylogenetic analyses: maximum parsimony, maximum likelihood, and Bayesian inference based on mitochondrial CO1 and 12S rRNA and nuclear S7 sequences. Estimates of species divergence times from fossil-calibrated Bayesian inference suggest that Anampses arose in the mid-Eocene and subsequently diversified throughout the Miocene. Evolutionary relationships within the genus, combined with limited spatial and temporal concordance among endemics, offer support for all three alternate models of diversification. Our findings emphasise the importance of peripherally isolated locations in creating and maintaining endemic species and their contribution to the biodiversity of the Indo-Australian Archipelago.  相似文献   

11.
The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora.  相似文献   

12.
Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median‐joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum.  相似文献   

13.
Electrophoretic analysis of proteins yielded evidence on the relationships of species of cranes and on genetic diversity within populations of some species. Diversity within the Greater Sandhill crane and a Florida population of the Florida Sandhill crane was similar to that of most other vertebrates, but diversity was low in the Mississippi Sandhill crane, in the Okefenokee population of the Florida Sandhill crane, and within the Siberian and Sarus cranes. Diversity was surprisingly high among whooping cranes, whose number dropped to less than 25 early in this century. Phylogenetic analysis, using both character state and distance algorithms, yielded highly concordant trees for the 15 species. The African crowned cranes (Balearica) were widely divergent from all other cranes. Species of Anthropoides, Bugeranus, and Grus clustered closely but sorted into two lineages: a Whooper Group consisted of the whooping, common, hooded, black-necked, white-naped, and red-crowned cranes of genus Grus; and a Sandhill Group included the Sandhill, Siberian, Sarus, and Brolga cranes of genus Grus, the wattled crane of genus Bugeranus, and the Demoiselle and blue cranes of genus Anthropoides.  相似文献   

14.
Hybridisation between coral species clearly occurs in vitro, but the evolutionary significance of this cross-fertility is still the subject of much debate. Compelling genetic and reproductive evidence support introgressive hybridization amongst Indo-Pacific members of the scleractinian genus Acropora. Although population genetic analyses indicate that interspecific hybridization events are relatively rare, they are likely be important on evolutionary time scales, creating the capacity for adaptive evolution by increasing genomic diversity and heterozygosity. However, in a recent paper based exclusively on the three endemic Caribbean Acropora species, Vollmer and Palumbi (2002) dispute the occurrence of reticulation in corals. Here we use data from both the Vollmer and Palumbi study and our earlier paper on the same species (van Oppen et al., 2000) to show that reticulation has occurred amongst the Caribbean Acropora species. Furthermore, conclusions based on the limited Caribbean Acropora fauna cannot simply be extrapolated to Indo-Pacific corals, and it is inappropriate to view some coral species as 'immortal mules'.  相似文献   

15.
Ainscough, B.J., Breinholt, J.W., Robison, H.W. & Crandall, K.A. (2013). Molecular phylogenetics of the burrowing crayfish genus Fallicambarus (Decapoda: Cambaridae). —Zoologica Scripta, 42, 306–316. The crayfish genus Fallicambarus contains 19 species of primary burrowing freshwater crayfish divided into two distinct subgenera. We test current hypotheses of the phylogenetic relationships among species within the genus as well as the monophyly of the genus. Our study samples all 19 species for five gene regions (both nuclear and mitochondrial) to estimate a robust phylogenetic hypothesis for the genus. We show that the genus is not a monophyletic group. The subgenus Creaserinus does fall out as a monophyletic group, but distinct from the subgenus Fallicambarus. The subgenus Fallicambarus appears to be monophyletic with the exception of the species Procambarus (Tenuicambarus) tenuis, which falls in the midst of this subgenus suggesting that it might be better classified as a Fallicambarus species. We also show that the species Fallicambarus fodiens is a species complex with distinct evolutionary lineages that are regionalized to different geographic areas.  相似文献   

16.
Many species of coral reef fishes are distinguished by their colour patterns, but genetic studies have shown these are not always good predictors of genetic isolation and species boundaries. The genus Amphiprion comprises several species that have very similar colouration. Additionally, morphological characters are so variable, that sibling species can show a considerable overlap, making it difficult to differentiate them. In this study, we investigated the species boundaries between the sibling species pair A. ocellaris and A. percula (Subgenus Actinicola) and three closely related species of the subgenus Phalerebus (A. akallopisos, A. perideraion, A. sandaracinos) by phylogenetic analysis of mitochondrial cytochrome b and control region sequences. These two subgenera show strong differences in their patterns of species boundaries. Within the A. ocellaris/A. percula complex, five clades were found representing different geographic regions. Two major divergences both with genetic distances of 4-7% in cty b and 17-19% in the d-loop region indicate the presence of three instead of two deep evolutionary lineages. The species of the subgenus Phalerebus show three monophyletic clades, independent of the geographical location of origin, but concordant to the morphological species classification. The genetic distances between the Phalerebus species were 2-5% in cty b and 10-12% in the control region.  相似文献   

17.
Eryngium is the largest and arguably the most taxonomically complex genus in the family Apiaceae. Infrageneric relationships within Eryngium were inferred using sequence data from the chloroplast DNA trnQ-trnK 5'-exon and nuclear ribosomal DNA ITS regions to test previous hypotheses of subgeneric relationships, explain distribution patterns, reconstruct ancestral morphological features, and elucidate the evolutionary processes that gave rise to this speciose genus. In total, 157 accessions representing 118 species of Eryngium, 15 species of Sanicula (including the genus Hacquetia that was recently reduced to synonymy) and the monotypic Petagnaea were analyzed using maximum parsimony and Bayesian methods. Both separate and simultaneous analyses of plastid and nuclear data sets were carried out because of the prevalence of polyploids and hybrids within the genus. Eryngium is confirmed as monophyletic and is divided into two redefined subgenera: Eryngium subgenus Eryngium and E. subgenus Monocotyloidea. The first subgenus includes all examined species from the Old World (Africa, Europe, and Asia), except Eryngium tenue, E. viviparum, E. galioides, and E. corniculatum. Eryngium subgenus Monocotyloidea includes all examined species from the New World (North, Central and South America, and Australia; herein called the "New World sensu stricto" clade) plus the aforementioned Old World species that fall at the base of this clade. Most sectional and subgeneric divisions previously erected on the basis of morphology are not monophyletic. Within the "New World sensu stricto" group, six clades are well supported in analyses of plastid and combined plastid and nuclear data sets; the relationships among these clades, however, are unresolved. These clades are designated as "Mexican", "Eastern USA", "South American", "North American monocotyledonous", "South American monocotyledonous", and "Pacific". Members of each clade share similar geographical distributions and/or morphological or ecological traits. Evidence from branch lengths and low sequence divergence estimates suggests a rapid radiation at the base of each of these lineages. Conflict between chloroplast and nuclear data sets is weak, but the disagreements found are suggestive that hybrid speciation in Eryngium might have been a cause, but also a consequence, of the different rapid radiations observed. Dispersal-vicariance analysis indicates that Eryngium and its two subgenera originated from western Mediterranean ancestors and that the present-day distribution of the genus is explained by several dispersal events, including one trans-Atlantic dispersal. In general, these dispersals coincide with the polytomies observed, suggesting that they played key roles in the diversification of the genus. The evolution of Eryngium combines a history of long distance dispersals, rapid radiations, and hybridization, culminating in the taxonomic complexity observed today in the genus.  相似文献   

18.
The level of genetic differentiation within and between evolutionary lineages of the common vole (Microtus arvalis) in Europe was examined by analyzing mitochondrial sequences from the control region (mtDNA) and 12 nuclear microsatellite loci (nucDNA) for 338 voles from 18 populations. The distribution of evolutionary lineages and the affinity of populations to lineages were determined with additional sequence data from the mitochondrial cytochrome b gene. Our analyses demonstrated very high levels of differentiation between populations (overall FST: mtDNA 70%; nucDNA 17%). The affinity of populations to evolutionary lineages was strongly reflected in mtDNA but not in nucDNA variation. Patterns of genetic structure for both markers visualized in synthetic genetic maps suggest a postglacial range expansion of the species into the Alps, as well as a potentially more ancient colonization from the northeast to the southwest of Europe. This expansion is supported by estimates for the divergence times between evolutionary lineages and within the western European lineage, which predate the last glacial maximum (LGM). Furthermore, all measures of genetic diversity within populations increased significantly with longitude and showed a trend toward increase with latitude. We conclude that the detected patterns are difficult to explain only by range expansions from separate LGM refugia close to the Mediterranean. This suggests that some M. arvalis populations persisted during the LGM in suitable habitat further north and that the gradients in genetic diversity may represent traces of a more ancient colonization of Europe by the species.  相似文献   

19.
The phylogenetic relationships and haplotype diversity of all Iberian barbels were examined by analyzing the complete mitochondrial cytochrome b gene sequence (1141 bp) of 72 specimens from 59 Iberian localities. Phylogenetic findings demonstrated a clear distinction between two mitochondrial lineages and confirmed the existence of two previously considered subgenera: Barbus and Luciobarbus: The first subgenus, Barbus, is represented on the Iberian Peninsula by Barbus haasi and Barbus meridionalis. The second subgenus, Luciobarbus, includes the remaining endemic Iberian species: Barbus comizo, Barbus bocagei, Barbus microcephalus, Barbus sclateri, Barbus guiraonis, and Barbus graellsii. Mean haplotype divergence between these subgenera was 10.40%, providing evidence of a clear subdivision within the Iberian barbels. Our results conflict with those reported in a recent study, based on 307 cytochrome b base pairs, that failed to identify any division within the genus Barbus in the Iberian Peninsula. The inclusion of nine further species belonging to this genus (used as outgroups) allowed us to establish a closer relationship of the Iberian species of the subgenus Barbus with other European taxa than with the Iberian Luciobarbus, which was found to cluster with North African, Caucasian, and Greek species. At the population level, no biogeographic structure was shown by specimens of each species (only 5.98% of the variation was attributable to differences among populations of each species). Given the discrete amount of divergence found among the Luciobarbus species, the formation of current hydrographic basins during the Plio-Pleistocene seems to have played a major role in their isolation and evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号