首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The plant pathogen Agrobacterium tumefaciens encodes predicted iron-responsive regulators, Irr and RirA, that function in several other bacteria to control the response to environmental iron levels. Deletion mutations of irr and rirA, alone and in combination, were evaluated for their impact on cellular iron response. Growth was severely diminished in the Δirr mutant under iron-limiting conditions, but reversed to wild-type levels in an Δirr ΔrirA mutant. The level of uncomplexed iron in the Δirr mutant was decreased, whereas the ΔrirA mutant exhibited elevated iron levels. Sensitivity of the Δirr and ΔrirA mutants to iron-activated antimicrobial compounds generally reflected their uncomplexed-iron levels. Expression of genes that encode iron uptake systems was decreased in the Δirr mutant, whereas that of iron utilization genes was increased. Irr function required a trihistidine repeat likely to mediate interactions with heme. Iron uptake genes were derepressed in the ΔrirA mutant. In the Δirr ΔrirA mutant, iron uptake and utilization genes were derepressed, roughly combining the phenotypes of the single mutants. Siderophore production was elevated in the rirA mutant, but most strongly regulated by an RirA-controlled sigma factor. Expression of rirA itself was regulated by Irr, RirA, and iron availability, in contrast to irr expression, which was relatively stable in the different mutants. These studies suggest that in A. tumefaciens, the Irr protein is most active under low-iron conditions, inhibiting iron utilization and activating iron acquisition, while the RirA protein is active under high-iron conditions, repressing iron uptake.  相似文献   

3.
4.
5.
6.
Rhizobactin 1021 is a hydroxymate siderophore produced by the soil bacterium Sinorhizobium meliloti 2011. A regulon comprising rhtA, encoding the outer membrane receptor protein for the ferrisiderophore; the biosynthesis operon rhbABCDEF; and rhrA, the Ara-C-like regulator of the receptor and biosynthesis genes has been previously described. We report the discovery of a gene, located upstream of rhbA and named rhtX (for "rhizobactin transport"), which is required, in addition to rhtA, to confer the ability to utilize rhizobactin 1021 on a strain of S. meliloti that does not naturally utilize the siderophore. Rhizobactin 1021 is structurally similar to aerobactin, which is transported in Escherichia coli via the IutA outer membrane receptor and the FhuCDB inner membrane transport system. E. coli expressing iutA and fhuCDB was found to also transport rhizobactin 1021. We demonstrated that RhtX alone could substitute for FhuCDB to transport rhizobactin 1021 in E. coli. RhtX shows similarity to a number of uncharacterized proteins which are encoded proximal to genes that are either known to be or predicted to be involved in iron acquisition. Among these is PA4218 of Pseudomonas aeruginosa, which is located close to the gene cluster that functions in pyochelin biosynthesis and outer membrane transport. PA4218 was mutated by allelic replacement, and the mutant was found to have a pyochelin utilization-defective phenotype. It is proposed that PA4218 be named fptX (for "ferripyochelin transport"). RhtX and FptX appear to be members of a novel family of permeases that function as single-subunit transporters of siderophores.  相似文献   

7.
8.
9.
10.
Plasmid-mediated iron uptake and virulence in Vibrio anguillarum   总被引:4,自引:0,他引:4  
The plasmid pJM1 of Vibrio anguillarum harbors genes encoding proteins that enable the bacterial cell to survive under iron limiting conditions. A subset of these proteins are involved in the biosynthesis of the siderophore anguibactin and in the internalization of the ferric-siderophore into the cell cytosol. We have identified several genes encoding non-ribosomal peptide synthetases that catalyze the synthesis of anguibactin, these genes are: angB/G, angM, angN, angR, and angT. In addition, the genes fatA, fatB, fatC, and fatD are involved in the transport of ferric-anguibactin complexes. These transport genes, together with the biosynthesis genes angR and angT, are included in the iron transport biosynthesis operon (ITBO). Both the biosynthesis and the transport genes are under tight positive as well as negative control. We have identified four regulators; two of them, a chromosomally encoded Fur and a plasmid-mediated antisense RNA, RNAbeta, act in a negative fashion, while positive regulation is facilitated by AngR and TAFr. We also have evidence that the siderophore itself plays a positive role in the regulatory mechanism of the expression of both transport and biosynthesis genes.  相似文献   

11.
12.
Iron uptake in proteobacteria by TonB-dependent outer membrane transporters represents a well-explored subject. In contrast, the same process has been scarcely investigated in cyanobacteria. The heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 is known to secrete the siderophore schizokinen, but its transport system has remained unidentified. Inspection of the genome of strain PCC 7120 shows that only one gene encoding a putative TonB-dependent iron transporter, namely alr0397, is positioned close to genes encoding enzymes involved in the biosynthesis of a hydroxamate siderophore. The expression of alr0397, which encodes an outer membrane protein, was elevated under iron-limited conditions. Inactivation of this gene caused a moderate phenotype of iron starvation in the mutant cells. The characterization of the mutant strain showed that Alr0397 is a TonB-dependent schizokinen transporter (SchT) of the outer membrane and that alr0397 expression and schizokinen production are regulated by the iron homeostasis of the cell.  相似文献   

13.
14.
The filamentous ascomycete A. nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin intracellularly. In this study we report the characterization of two siderophore biosynthetic genes, sidA encoding l-ornithine N(5)-monooxygenase and sidC encoding a non-ribosomal peptide synthetase respectively. Disruption of sidC eliminated synthesis of ferricrocin and deletion of sidA completely blocked siderophore biosynthesis. Siderophore-deficient strains were unable to grow, unless the growth medium was supplemented with siderophores, suggesting that the siderophore system is the major iron assimilatory system of A. nidulans during both iron depleted and iron-replete conditions. Partial restoration of the growth of siderophore-deficient mutants by high concentrations of Fe(2+) (but not Fe(3+)) indicates the presence of an additional ferrous transport system and the absence of an efficient reductive iron assmilatory system. Uptake studies demonstrated that TAFC-bound iron is transferred to cellular ferricrocin whereas ferricrocin is stored after uptake. The siderophore-deficient mutant was able to synthesize ferricrocin from triacetylfusarinine C. Ferricrocin-deficiency caused an increased intracellular labile iron pool, upregulation of antioxidative enzymes and elevated sensitivity to the redox cycler paraquat. This indicates that the lack of this cellular iron storage compound causes oxidative stress. Moreover, ferricrocin biosynthesis was found to be crucial for efficient conidiation.  相似文献   

15.
A universal chemical assay used to detect the production of siderophores in a range of Rhizobium strains showed that production is strain specific. Iron nutrition bioassays carried out on Rhizobium meliloti strains to determine cross-utilization of their siderophores showed that R. meliloti 2011, 220-5, and 220-3 could each use the siderophores produced by the other two but not the siderophore produced by R. meliloti DM4 (and vice versa). Mutants of R. meliloti 2011 and 220-5 defective in siderophore production were isolated by Tn5-mob mutagenesis. The Tn5-mob-containing EcoRI fragment of mutant R. meliloti 220-5-1 was cloned into pUC19. By using this fragment as a probe, the presence of a homologous region was observed in R. meliloti 2011 and 220-3 but not in R. meliloti DM4. A complementing cosmid from a gene bank of R. meliloti 2011 was identified by using the same probe. Introduction of this cosmid into R. meliloti 102F34, a strain not producing a siderophore, resulted in the ability of this strain to produce a siderophore and also in the ability to utilize the siderophores produced by R. meliloti 2011, 220-5, and 220-3 but not the siderophore produced by R. meliloti DM4. A comparative analysis of the outer membrane proteins prepared from iron-deficient cultures of R. meliloti 102F34 and 102F34 harboring the cosmid revealed the presence, in the latter, of a low-iron-induced outer membrane protein corresponding to a low-iron-induced protein in R. meliloti 2011, 220-5, and 220-3. This protein is not present in R. meliloti DM4. The results suggest that R. meliloti 2011, 220-5, and 220-3 produce siderophores that are identical or sufficiently similar in structure to be transported by the membrane transport system of each strain while also indicating that utilization of a particular siderophore is correlated with the presence of specific outer membrane proteins.  相似文献   

16.
17.
18.
Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.  相似文献   

19.
Iron availability affects the course of tuberculosis infection, and the ability to acquire this metal is known to be essential for replication of Mycobacterium tuberculosis in human macrophages. M. tuberculosis overcomes iron deficiency by producing siderophores. The relevance of siderophore synthesis for iron acquisition by M. tuberculosis has been demonstrated, but the molecules involved in iron uptake are currently unknown. We have identified two genes (irtA and irtB) encoding an ABC transporter similar to the YbtPQ system involved in iron transport in Yersinia pestis. Inactivation of the irtAB system decreases the ability of M. tuberculosis to survive iron-deficient conditions. IrtA and -B do not participate in siderophore synthesis or secretion but are required for efficient utilization of iron from Fe-carboxymycobactin, as well as replication of M. tuberculosis in human macrophages and in mouse lungs. We postulate that IrtAB is a transporter of Fe-carboxymycobactin. The irtAB genes are located in a chromosomal region previously shown to contain genes regulated by iron and the major iron regulator IdeR. Taken together, our results and previous observations made by other groups regarding two other genes in this region indicate that this gene cluster is dedicated to siderophore synthesis and transport in M. tuberculosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号