首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With its simple glycotripeptide repeating structure the antifreeze glycoprotein of polar fish may be an especially simple conformational mode for mucin glycoproteins with similar but more complex structures. The fully assigned proton n.m.r. spectrum confirms the anomeric configurations of the hexapyranosidic sugars of the side chains and the coupling constants of the alpha GalNAc and the beta Gal residues show both to be in the expected 4C1 chair conformation. The assignment of a single resonance for each proton of the (Ala-Thr-Ala)n repeat unit coupled with the observation of long range nuclear Overhauser effects (n.O.e.) implies a three-fold repeating conformation. The resonances of the two alanines are distinct and can be assigned to their correct positions in the peptide sequence by n.O.e. observed at the amide proton resonances on saturation of the alpha proton signals. The amide proton coupling constants of all three peptide residues are similar and imply a limited range of peptide backbone torsion angles, phi CN. The large n.O.e. which has been observed between the amide proton and the alpha proton of the residue preceding it in the sequence implies large positive values for the peptide dihedral angle, psi CC. Limits are placed on possible values of side chain dihedral angles by the observation of the coupling constant between the alpha and beta protons of the threonyl residue. The observation of n.O.e. between the anomeric proton of GalNAc and the threonyl side chain protons gives information on the conformation of the alpha glycosidic linkage between the disaccharide and the peptide. n.O.e. observed between the protons of the beta glycosidic linkage indicates the conformation of the disaccharide and the large amide proton coupling constant of the GalNAc residue shows a trans proton relationship. The spectroscopically derived data have been combined with conformational energy calculations to give a conformational model for antifreeze glycoprotein in which the hydrophobic surfaces of the disaccharide side chains are wrapped closely against a three-fold left handed helical peptide backbone. The hydrophilic sides of the disaccharides are aligned so that they may bind to the ice crystal face, which is perpendicular to the fast growth axis inhibiting normal crystal growth.  相似文献   

2.
N-desulphated heparin, partially N-acylated on average with three oleoyl chains per molecule, inhibits the amidolytic activity of plasmin (IC50 16 nM) and urokinase (IC50 10mM) when assayed on N-p-tosyl-Gly-Pro-Lys-4-nitroanilide and benzoyl-Ala-Gly-Arg-4-nitroanilide substrates respectively. N-desulphated heparin is not inhibitory. This effect requires the covalent binding of oleoyl residues to heparin and it decreases with increasing concentration of Tris-HCl and non-ionic detergents.  相似文献   

3.
The capsular polysaccharide of the bacterium Escherichia coli O9:K32(A):H19 was analyzed using chemical methods (hydrolysis, sequential Smith degradation, methylation analysis) together with 1H- and 13C-n.m.r. spectroscopy. 13C-N.m.r. spectroscopy and chemical analyses indicated that the K32 polysaccharide is composed of equimolar proportions of glucose, galactose, rhamnose, and glucuronic acid, and carries O-acetyl groups. 1H-N.m.r. analysis of native K32 polysaccharide revealed five resonances in the anomeric region (delta 5.52, 5.16, 5.12, 5.02, and 4.73) and the presence of an acetyl group (delta 2.18). O-Deacetylation of the polysaccharide resulted in the loss of the resonance at delta 2.18 and one of the resonances (delta 5.52) in the anomeric region. The "extra" anomeric resonance in the 1H-n.m.r. spectrum of the native K32 polymer was assigned to H-2 of rhamnose, which experiences a large downfield shift when the 2-position is O-acetylated. This was confirmed by a 2D-COSY n.m.r. experiment and studies of model compounds. The K32 capsular polysaccharide is of the "2 + 2" type, comprised of the following repeating unit: (sequence; see text) This structure is identical to that of Klebsiella K55 capsular polysaccharide.  相似文献   

4.
Dermatan sulphates, in which iduronate was the predominant uronate constituent, were partially digested by chondroitinase ABC to produce oligosaccharides of the following structure: delta UA-[GalNAc(4SO3)-IdoA]mGalNAc(4SO3) [where m = 0-5, delta UA represents beta-D-gluco-4-enepyranosyluronate, IdoA represents alpha-L-iduronate and GalNAc(4SO3) represents 2-acetamido-2-deoxy-beta-D-galactose 4-O-sulphate], which were fractionated by gel-permeation chromatography and examined by 100 MHz 13C-n.m.r. and 400/500 MHz 1H-n.m.r. spectroscopy. Experimental conditions were established for the removal of non-reducing terminal unsaturated uronate residues by treatment with HgCL2, and reducing terminal N-acetylgalactosamine residues of the oligosaccharides were reduced with alkaline borohydride. These modifications were shown by 13C-n.m.r. spectroscopy to have proceeded to completion. Assignments of both 13C-n.m.r. and 1H-n.m.r. resonances are reported for the GalNAc(4SO3)-IdoA repeat sequence in the oligosaccharides as well as for the terminal residues resulting from enzyme digestion and subsequent modifications. A full analysis of a trisaccharide derived from dermatan sulphate led to the amendment of published 13C-n.m.r. chemical-shift assignments for the polymer.  相似文献   

5.
The disaccharides IdoA(2SO3)-anManOH(6SO3) and IdoA-anManOH (where IdoA represents alpha-L-iduronate, anManOH represents 2,5-anhydro-D-mannitol and SO3 represents sulphate ester) were prepared from bovine lung heparin using HNO2 depolymerization, borohydride reduction and desulphation, and were examined by 400 MHz 1H-n.m.r. spectroscopy. Three-bond proton-proton coupling constants around the IdoA ring were determined under a range of experimental conditions. For unsulphated IdoA all four proton-proton coupling constants varied markedly as a function of temperature, pH and solvent, providing clear evidence for a rapid conformational equilibrium. These data were analysed in terms of the three most energetically stable IdoA conformers: 1C4, 4C1, and 2S0. Predicted coupling constants for these conformers were determined using a modified Karplus-type relationship. For unsulphated IdoA in dimethyl sulphoxide the equilibrium was provoked strongly in favour of a slightly distorted 4C1 'chair' IdoA conformer for which coupling constants have not previously been reported. For sulphated IdoA in aqueous conditions and at low pH the equilibrium is strongly in favour of the alternative 1C4 chair conformer. Under many conditions, however, significant contributions from all three conformers occur for the non-reducing terminal IdoA in these disaccharides.  相似文献   

6.
T A Koerner  Jr  L W Cary  S C Li    Y T Li 《The Biochemical journal》1981,195(3):529-533
The 13C n.m.r. spectrum of Forssman hapten was obtained at 25.16 MHz in [3H] chloroform/[2H] methanol (1:1, v/v), using purified glycosphinogolipid from canine intestinal mucosa (glycolipid I). All amide, olefin, anomeric, intersaccharide glycosidic ether, amide linkage, methyl and many methylene resonances were resolved and assigned. Analysis of the anomeric region reveals the following pentaglycosylceramide structure as originally proposed [Siddiqui & Hakomori (1971) J. Biol. Chem. 246, 5766-5769]: GalNAc (alpha 1 leads to 3) GalNAc (beta 1 leads to 3) Gal (alpha 1 leads to 4) Gal (beta 1 leads to 1) ceramide. Analysis of the amide, olefin and methylene regions reveals no alpha-hydroxy fatty acyl group and less than or equal to 6 mol% unsaturated fatty acyl groups are present. Chemical-shift assignments are reported for the anomeric and glycosidic ether carbon atoms of intersaccharide-linked alpha-galactose and N-acetyl-alpha-galactosamine residues. Two rules are proposed for the assignment of the anomeric form of 1 leads to 3 and 1 leads to 4 linkages of galactose and N-acetylgalactosamine residues present in the glycone of glyco-conjugates. The present study emphasizes the importance of the anomeric "window" (80-120 p.p.m.) in studies of glycone structure.  相似文献   

7.
Six heparin-derived oligosaccharides, ranging in size from di- to octa-saccharide and forming two closely related series differing in structure by the substitution of an unsulfated D-glucuronate for a 2-sulfated L-iduronate residue, have been characterized by 2-dimensional 1H-n.m.r. spectroscopy. In addition to providing new data on hexa- and octa-saccharides, several important changes to previously published data have been found for the two tetrasaccharides. The D-glucuronic acid H-5 proton is assigned to a resonance in the same region as resonances for the H-3 and H-4 D-glucuronate protons, rather than downfield from these resonances as earlier reported. The presence of D-glucuronic acid in the heparin sequence of the series-1 fragments affects the positions of neighboring D-glucosamine resonances, in particular shifting the anomeric proton signal in the preceding D-glucosamine 0.1-0.2 p.p.m. downfield. Resonances from the reducing-end D-glucosamines differ from internal D-glucosamine resonances both in relative position and in the degree of chemical shift difference between the H-6 and H-6' protons. This work illustrates the usefulness of two-dimensional techniques in determining heparin structure and emphasizes the need for direct analysis, rather than assignment by comparison to model compounds.  相似文献   

8.
An oleolylated derivative (I) of partially N-desulphated heparin was prepared containing an average number of three oleoyl residues for one molecule of heparin. The inhibitory capacity of I (IC50 = 0.55 microM) for leucocyte elastase resembles that of heparin (IC50 = 0.2 microM). In contrast to heparin, I is also an inhibitor of porcine pancreatic elastase (IC50 = 0.68 microM) and it also has the capacity to protect elastin fibres against the degradation by leucocyte elastase. When insoluble elastin is pretreated with I its degradation by leucocyte elastase is inhibited by almost 90% while pretreatment of elastin with heparin exhibited only a moderate effect on elastolysis (10% inhibition).  相似文献   

9.
A sulphotransferase preparation from hen's uterus catalysed the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to N-desulphated heparan sulphate, heparan sulphate, N-desulphated heparin and dermatan sulphate. Heparin, chondroitin sulphate and hyaluronic acid were inactive as substrates for the enzyme. N-desulphated heparin was a much poorer substrate for the enzyme than N-desulphated heparan sulphate suggesting that properties of the substrate other than available glucosaminyl residues influenced enzyme activity. N-acetylation of N-desulphated heparin and N-desulphated heparan sulphate reduced their sulphate acceptor properties so it was unlikely that the N-acetyl groups of heparan sulphate facilitated its sulphatiion. Direct evidence for the transfer of [35S]sulphate to amino groups of N-desulphated haparan sulphate was obtained by subsequent isolation of glucosamine N-[35S]sulphate from heparan [35S]sulphate product. This was made possible through the use of a flavobacterial enzyme preparation which contained “heparitinase” activity but had been essentially freed of sulphatases. Attempts to transfer [35S]sulphate to glucosamine or N-acetylglucosamine were unsuccessfull.  相似文献   

10.
A glucuronomannan (GM) was derived by removal, through Smith degradation, of xylose from the native (3-O-acetylglucurono)xylomannan exopolysaccharide isolated from Tremella mesenterica. 13C-N.m.r. chemical shifts measured at various pD values were compared for p-nitrophenyl beta-D-glucopyranosiduronic acid (1) and two GMs (2 and 3) differing in GlcA content (Man:GlcA; 2, 10:1; and 3, 5:1). Also measured and compared were pKa values for 1 and 2. One-dimensional and two-dimensional (COSY and HETCOR) n.m.r. data allowed unambiguous assignments of pD-sensitive chemical shifts due to 2-O-beta-D-GlcpA substituents attached to a (1----3)-linked alpha-D-Manp backbone. The pKa and n.m.r. data indicated that the CO2H groups in either GM are independent of each other, and are similar in behavior to those of p-nitrophenyl beta-D-glucopyranosiduronic acid molecules. The n.m.r. data confirmed the previous, chemically deduced, structural role of GlcpA in the native polysaccharide from T. mesenterica, and indicated that significant pD-induced changes occur in the stabilities of the glycosidic orientations in the GM. Previous 13C-n.m.r. assignments for 2-O-beta-D-GlcpA in polysaccharides derived from Cryptococcus neoformans serotype A-variant were confirmed, except for the signal due to the anomeric carbon atom. This signal is now known to be pD-sensitive. In acidic solutions, it is coincident with the signal (104.5 p.p.m.) due to the anomeric carbon atoms of the unsubstituted alpha-D-Manp backbone residues. In basic solutions, the 2-O-beta-D-GlcpA anomeric carbon resonance is shifted upfield by approximately 0.2 p.p.m., and is observed as a separate signal.  相似文献   

11.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

12.
Characteristics of the 1H-n.m.r. spectra of heparin admixed with other glycosaminoglycans are described with respect to the identification of the latter as possible contaminants of pharmaceutical heparins. Chemical shift differences are sufficiently large, particularly with the aid of resolution enhancement, to allow for the detection of dermatan sulfate, chondroitin 4- or 6-sulfate, hyaluronic acid, or heparan sulfate as a minor constituent in the presence of heparin. The acetamidomethyl resonance region (delta 1.95-2.15) is especially useful in this context, both for identification and quantitative estimation. Whereas dermatan sulfate is a common contaminant of pharmaceutical heparin preparations, in some instances comprising 10-15 percent of the polymer mixture, the other glycosaminoglycans, by contrast, were not detected in such preparations. Two-dimensional heterocorrelation and homo-correlation n.m.r. experiments have provided 1H- and 13C-chemical shift data that complete or verify (or both) previous information available for heparin, dermatan sulfate, and chondroitin 4- and 6-sulfates (chondroitins A and C).  相似文献   

13.
13C-N.m.r. spectroscopy has been used to determine the equilibrium composition of solutions of maltulose and isomaltulose in deuterium oxide. Resonance assignments have been made for maltulose, isomaltulose, sucrose, leucrose, 1-kestose, nystose, inulin, and grass levan. Some earlier assignments for sucrose and grass levan are corrected. The resonances of the D-glucopyranosyl group in maltulose and isomaltulose have been observed to be sensitive to the ring and anomeric forms of the adjacent D-fructose residue. Spin-lattice relaxation-times (T1) and nuclear Overhauser enhancement factors (n.O.e.f.) for the carbon atoms of the D-fructofuranosyl residues of inulin have been measured, and used in conjunction with deuteration, to aid in resonance and linkage assignments.  相似文献   

14.
The chemical composition and the 13C n.m.r. spectra of heparin oligosaccharides (essentially octasaccharides), having high affinity for antithrombin III and high anti-(Factor Xa) activity, prepared by three independent approaches (extraction, partial deaminative cleavage with HNO2 and partial depolymerization with bacterial heparinase), leading to different terminal residues, have been studied and compared with those of the corresponding inactive species. Combined wit chemical data, the spectra of the active oligosaccharides and of their fragmentation products afforded information on composition and sequence. The three types of active oligosaccharides were shown to have the common hexasaccharide core I-Aa-G-As*-Is-As, where I and alpha-L-idopyranosyl-uronic acid, Aa = 2-acetamido-2-deoxy-alpha-D-glucopyranose, G = beta-D-glucopyranosyl-uronic acid, Is = alpha-L-idopyranosyluronic acid 2-O-sulphate, As = 2-deoxy-2-sulphamino-alpha-D-glucopyranose 6-O-sulphate. The fourth residue (As*) is an unusually substituted amino sugar resistant to mild deamination. The 13C spectra of the active species are characterized by signals from the above atypical amino sugar, the most evident of which is at 57.7 p.p.m. These signals, compared with those of appropriate synthetic model compounds, are compatible with the recently proposed 3-O-sulphation of the residue As* [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555].  相似文献   

15.
Heparin uptake and desulphation by cultured macrophages were investigated. Histones, polyamino-acids, protamine and eosinophil-basic protein stimulated both heparin uptake and desulphation, processes found to be non-related. Poly-l-ornithine and poly-dl-lysine increased the heparin uptake by about 33-fold, and histone produced up to 7.5-fold increase in the desulphation. The same polycations inhibited heparin desulphation by macrophage extracts.  相似文献   

16.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

17.
The conformation in solution of the pentasaccharide methyl glycoside (As-G-A*-Is-AM; 1), which represents the binding site of heparin for Antithrombin III, has been investigated using molecular mechanics and 1H-n.m.r. spectroscopy. The pentasaccharide has a rather rigid (As-G-A*) and a more flexible (Is-AM) region. A simplified model of 1, comprising two conformations, corresponding to the 1C4 and the 2S0 forms of the iduronate residue, and modified at the G-A* glycosidic linkage with respect to the energy minimum, reproduces most of the observed 3J values and n.O.e. enhancements. The possible role in the binding to Antithrombin III of a low-energy conformer, not observed in solution, is discussed.  相似文献   

18.
Commercially available human plasma-derived preparations of the serine protease inhibitor antithrombin (AT) were shown to contain low levels of oxidation, and we sought to determine whether oxidation might be a means of regulating the protein's inhibitory activity. A recombinant form of AT, with similarly low levels of oxidation as purified, was treated with hydrogen peroxide in order to study the effect of oxidation, specifically methionine oxidation, on the biochemical properties of this protein. AT contains two adjacent methionine residues near the reactive site loop cleaved by thrombin (Met314 and Met315) and two exposed methionines that border on the heparin binding region of AT (Met17 and Met20). In forced oxidations with hydrogen peroxide, the methionines at 314 and 315 were found to be the most susceptible to oxidation, but their oxidation did not affect either thrombin-inhibitory activity or heparin binding. Methionines at positions 17 and 20 were significantly oxidized only at higher concentrations of peroxide, at which point heparin affinity was decreased. However at saturating heparin concentrations, activity was only marginally decreased for these highly oxidized samples of AT. Structural studies indicate that highly oxidized AT is less able to undergo the complete conformational change induced by heparin, most probably due to oxidation of Met17. Since this does not occur in less oxidized, and presumably more physiologically relevant, forms of AT such as those found in plasma preparations, oxidation does not appear to be a means of controlling AT activity.  相似文献   

19.
P Gettins  E W Wooten 《Biochemistry》1987,26(14):4403-4408
The denaturation of human and bovine antithrombin III by guanidine hydrochloride has been followed by 1H NMR spectroscopy. The same unfolding transition seen previously from circular dichroism studies [Villanueva, G. B., & Allen, N. (1983) J. Biol. Chem. 258, 14048-14053] at low denaturant concentration was detected here by discontinuous changes in the chemical shifts of the C(2) protons of two of the five histidines in human antithrombin III and of three of the six histidines in bovine antithrombin III. These two histidines in human antithrombin III are assigned to residue 1 and, more tentatively, to residue 65. Two of the three histidines similarly affected in the bovine protein appear to be homologous to residues in the human protein. This supports the proposal of similar structures for the two proteins. In the presence of heparin, the discontinuous titration behavior of these histidine resonances is shifted to higher denaturant concentration, reflecting the stabilization of the easily unfolded first domain of the protein by bound heparin. From the tentative assignment of one of these resonances to histidine-1, it is proposed that the heparin binding site of antithrombin III is located in the N-terminal region and that this region forms a separate domain from the rest of the protein. The pattern of disulfide linkages is such that this domain may well extend from residue 1 to at least residue 128. Thermal denaturation also leads to major perturbation of these two histidine resonances in human antithrombin III, though stable intermediates in the unfolding were not detected.  相似文献   

20.
The assignment of the aromatic 1H n.m.r. resonances of the four tyrosine residues of bovine 2-zinc insulin is reported, based on double resonance techniques, use of Hahn spin echo pulse sequences and examination of specific derivatives nitrated at tyrosines A14 and A19 as well as des-(B26-B30)-insulin. Titration curves of the four tyrosine residues show that residues A14 and B16 have normal pK' values of 10.3-10.6 in solution, consistent with their accessibility to solvent in monomer and dimer in the crystal. Tyrosine residues A19 and B26 have pK' values of 11.4 and exhibit other features in their titration curves that are consistent with limited accessibility to solvent and a nonpolar environment. The meta protons of residues B16 and B26 both observe the titration of a nearby tyrosine residue, probably A19. Interpretation of the n.m.r. data obtained in solution is consistent with the crystallographic data for the monomer and dimer obtained on insulin crystals [Blundell, Dodson, Hodgkin & Mercola (1972) Adv. Protein Chem. 26, 279-402].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号