首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the growth of the asporogenous variant ofBacillus megaterium KM in medium containing NO3 as nitrogen source, the relative rate of extracellular protease synthesis is higher than in the presence of NH4 +. It approaches the relative rate of enzyme synthesis at the incubation of cells in nitrogen-free medium with glucose. This supports the suggestion that even amino acids which are synthesized endogenously slow down the protease production. In the postlogarithmic or stationary phase the protease production stops. The interruption of enzyme production does not appear as a result of insufficient aeration in a dense suspension, or of accumulation of amino acids or their metabolites in cells. The non-growing cells retain their ability to renew the enzyme synthesis when transferred into a fresh medium, even into a medium without nitrogen source. In the same way it is possible to “induce” the protease production, if Ca2+ is added to cells in the stationary phase when the population was grown in the Ca2+ free medium. The amount of enzyme produced at the expense of protein turnover by the non-growing populations is sufficient for the fast hydrolysis of exogenous protein in the medium and for assuring the influx of a sufficient amount of peptides into the cells. In such a case the growth of the culture is therefore very quickly renewed.  相似文献   

2.
Kinetics of degradation of labelled proteins was followed in two asporogenic mutants ofBacillus megaterium during incubation in a sporulation medium. Both the mutant producing exocellular protease (KM 1prn +) and the mutant not producing the enzyme (KM 12prn) were found to contain a labile protein fraction, whose proportion decreases with prolonged time of labelling and whose half-life is about 1 h. Most proteins were relatively stable and were degraded at a rate of 1 %/h and 2 %/h in strains KM 1 and KM 12, respectively (half life 70–80 h and 35–40 h in strains KM 1 and KM 12, respectively). The intracellular proteolytic activity of the KM 12 mutant remains practically the same during incubation in the sporulation medium or slowly increases. The labile protein fraction practically disappears from the cells after a 3.5-h incubation. When such a culture is then subjected to a shift-up and transferred again to the sporulation medium, the rate of protein turnover temporarily increases. The temporary increase of the turnover rate is caused by a partial replenishment of the labile protein fraction rather than by an accelerated degradation of the relatively stable fraction. The intracellular proteolytic activity does not increase under these conditions. The wild sporogenic strain ofB. megaterium also contains the labile protein fraction. Its half protein life is 1 h or less. However, the second protein fraction is degraded much more rapidly than in the asporogenic mutants and its half life is 6–7 h.  相似文献   

3.
A protease, excreted by a sporogeneous strain of B. megaterium, growing exponentially in a minimum glucose ammonium medium, was isolated. It is a neutral endopeptidase, stabilized by Ca++, inhibited by o-phenanthroline, but not by di-isopropylfluorophosphate. The specificity, studied on insulin B-chain, glucagon, cytochrome c, and dipeptides substrates, indicated the need for a dipeptide backbone with both substituted amino and carboxyl groups. A requirement was observed for a nonpolar lateral chain in the amino acid whose amino group was involved in the peptide bond (Leu, Phe, Ala, He, Val). Rates of hydrolysis varied also with the amino acid whose carboxyl group was involved (e.g., His > Ser > Ala > Gly). In complex medium, supplemented with Yeast Extract, the biosynthesis of the protease was repressed during growth, but the same enzyme was excreted during sporulation. The repression was apparently of the same nature as that controlling sporulation during and after growth (e.g., repression by a mixture of amino acids or high concentration of glucose). An asporogeneous mutant showed a normal product ion of protease under all conditions, and a low intracellular protease turnover after growth. A mutant unable to produce protease showed a normal sporulation and a high protein turnover. This protease, here termed megapeptidase, seems to be a typical growth enzyme, not related to either the sporulation process or to the protein turnover after growth.  相似文献   

4.
Summary Low concentrations ofcycloheximide, sufficient to block net protein synthesis in growing normal and cancer cells, had no effect on protein turnover, i.e. either the incorporation of labeled amino acids from media lacking other amino acids essential for growth, or the loss to the medium of amino acids from prelabeled cells. At the concentrations that blocked growth, the rate of amino acid incorporation from complete medium was reduced to the “quo;turnover level,” i.e. the rate of incorporation seen in amino acid-deficient media. Protein turnover was inhibited only at higher concentrations of the inhibitor. Qualitatively similar results have been obtained with puromycin, anisomycin, emetin and tylocerebrine.  相似文献   

5.
The temperature permissive for sporulation (up to 42°C) inBacillus megaterium is by 4–5°C lower than that for its growth (up to 46–47°C). The ability ofB. megaterium cells to synthesize and degrade stress proteins under incubation in the sporulation medium was therefore investigated. The higher level of hsp 70, a typical stress protein induced by a temperature shock in postexponential growth phase, did not increase the permissive temperature of sporulation. The hsp 70 protein did not undergo a rapid turnover and its portion in the soluble protein fraction did not drop for at least 6 h at a temperature that was nonpermissive for sporulation (43.5°C). On the other hand, the elevated level of hsp 70 could not bring about the inhibition of sporulation as it was retained in the cells even after a shift of the temperature to 35°C, permitting sporulation of the culture.  相似文献   

6.
Bacillus megaterium was labeled by 10-min pulses of14C-leucine at the end of the growth phase or at 1, 3.5 and 5 h after transfer to a sporulation medium. Proteins labeled during growth or reversible sporulation phase were degraded in two-phase kinetics,i.e. a decreasing degradation rate was followed by its substantial increase. Proteins labeled during the irreversible sporulation phase were degraded at a continuously decreasing degradation rate only. However, when the amount of degraded proteins was expressed as a portion of proteins degradable during the whole sporulation cycle, the degradation was rapid and followed similar kinetics irrespective of the time of labeling. The degradation constants fluctuated in this case between 0.207/h and 0.275/h. The protein fraction insensitive to turnover increased with the time of incubation in the sporulation medium in parallel to the amount of proteins appearing in spores.  相似文献   

7.
Proteinase activities of Saccharomyces cerevisiae during sporulation.   总被引:11,自引:7,他引:4       下载免费PDF全文
Sporulation in Saccharomyces cerevisiae occurs in the absence of a exogenous nitrogen source. Thus, the internal amino acid pool and the supply of nitrogen compounds from protein and nucleic acid turnover must be sufficient for new protein synthesis. Since sporulation involves an increased rate of protein turnover, an investigation was conducted of the changes in the specific activity of various proteinases. A minimum of 30% of the vegetative proteins was turned over during the course of sporulation. There was a 10- to 25-fold increase in specific activity of various proteinases, with a maximum activity around 20 h after transfer into the sporulation medium. The increase in activities was due to de novo synthesis since inhibition of protein synthesis by cycloheximide blocks both an increase in proteinase activities and sporulation. There was no increase observed in proteinase activities of nonsporogenic cultures (a and alpha/alpha strains) inoculated into the sporulation medium, suggesting that the increase in proteinase activities is "sporulation specific" and not a consequence of step-down conditions. The elution patterns through diethylaminoethyl-Sephadex chromatography of various proteinases extracted from T0 and T18 cells were similar, and no new species was observed.  相似文献   

8.
The turnover of nucleic acids and changes in ribonuclease activity during sporulation of Saccharomyces cerevisiae were studied. In the sporulating strains, 37–58% of vegetatively synthesized RNA were degraded during the sporulation process. The degree of degradation of vegetative RNA was proportional to the sporulation ability. In the non-sporulating strains, the degradation of vegetative RNA was less than 28% in the sporulation medium. Accompanied by the degradation of vegetative RNA, a ribonuclease activity increased several times during sporulation. We have found a close relation among the sporulation rate, the degree of the degradation of vegetative RNA and the increase in ribonuclease activity in the sporulation medium, using cells of which sporulation ability was repressed by changing the age or carbon source in various degrees.  相似文献   

9.
Amino acids added to a population ofBacillus megaterium immediately after its transfer to a sporulation medium stimulated growth, delayed sporulation by 1 h, and delayed the development of intracellular cytoplasmic serine proteinase (ISP) activity. However, the ISP activity in late sporulation stages exceeded twice that of the control population. Amino acids supplemented at T3, i.e., at the time when engulfed forespores were developing, caused a decrease of specific ISP activity. The course of the phenylmethane sulfonyl fluoride (PMSF)-resistant activity in the cytoplasm was not affected by amino acids. Intracellular degradation of proteins prelabeled at the end of the growth phase was decreased by amino acids during the reversible sporulation phase but was only slightly affected later.  相似文献   

10.
Intracellular proteolytic activity increased during incubation of the sporogenic strain ofBacillus megaterium KM in a sporulation medium together with excretion of an extracellular metalloprotease. The exocellular protease activity in a constant volume of the medium reached a 100-fold value with respeot to the intracellular activity. Maximal values of the activity of both the extracellular and intracellular enzyme were reached after 3 – 5 h of incubation. After 7 h 20 – 50% cells formed refractile spores. The intracellular proteolytic system hydrolyzed denatured proteinsin vitro at a rate up to 150 μg mg-1 h-1 and native proteins at a rate up to 70 μg mg-1 h-1. Degradation of proteinsin vivo proceeded from the beginning of transfer to the sporulation medium at a constant rate of 40 μg mg-1 h-1 and the inactivation of beta-galactosidase at a rate of 70 μg mg-1 h-1. The intracellular proteolytic activity was inhibited to 65 – 88% by EDTA, to 23 – 76% by PMSF. Proteolysis of denatured proteins was inhibited both by EDTA and PMSF more pronouncedly than proteolysis of native proteins; 50 – 65% of the activity were localized in protoplasts. Another strain ofBacillus megaterium (J) characterized by a high (up to 90%) and synchronous sporulation activity was found to behave in a similar way, but the rate of protein turnover in this strain was almost twice as high. The asporogenic strain ofBacillus megaterium KM synthesized the exocellular protease in the sporulation medium, but its protein turnover was found to decrease substantially after 3 – 4 h. The intraeellular proteolytic system of the sporogenic strain J and the asporogenic strain KM were also inhibited by EDTA and PMSF.  相似文献   

11.
When incubated in a sporulation medium, the sporogenous strains of Bacillus megaterium degrade proteins at a rate of 4-10% X h-1. The maximal rate of protein turnover is reached after 3-4 hrs at the time of development of forespores and then decreases again. The rate of protein turnover in the asporogenous strain decreases steadily under similar conditions from 3-8% X h-1 at the beginning of incubation to 1% X h-1 after 5-6 hrs in the sporulation medium. The rate of degradation of proteins in vitro in protoplast lysates is similar or higher than the rate of protein turnover. The exocellular, as well as periplasmic proteolytic activity, is suppressed by amino acids more severely than the activity in protoplasts. Mutants devoid of the exocellular proteolytic enzyme contain also less proteolytic activity in the periplasm than in the protoplasts, in contrast to the wild strain. However, their rate of protein turnover, as well as the degradation of abnormal proteins is similar to that in the wild strain. This supports a view that the proteolytic system in protoplasts is involved in intracellular protein catabolism. The periplasmic enzyme can be considered as a kind of the exocellular proteinase.  相似文献   

12.
A defined medium (CDM) is described which supported growth and sporulation of type E strains of Clostridium botulinum, but not sporulation of other serotypes of C. botulinum or C. sporogenes. As compared to growth in complex medium, spore outgrowth was delayed and both the growth rate and the cell yield was reduced. However, efficiency of sporulation of the type E MSpt strain in a chemically defined medium (CDM) was the same as that in complex medium and, in fact, sporulation was nearly synchronous and completed within 3 h of the first appearance of phase-bright endospores, compared with completion in 9 h in TPGY. Growth studies with CDM, from which single amino acids were omitted, showed that isoleucine was essential for outgrowth of heat-activated spores of the MSp+ strain, whereas valine was required for that of the Ts-25 mutant. Radioactive isoleucine was incorporated by germinating MSp+ spores at an earlier stage and at a more rapid rate than labelled methionine or mixed amino acids. Uptake studies showed that isoleucine accumulated in a prominent acid-soluble pool during outgrowth, a period when its incorporation into protein was not evident. The results suggest that the isoleucine may be required for a purpose other than protein synthesis during outgrowth.  相似文献   

13.
The turnover of protein in a prototrophic strain of Bacillus stearothermophilus during exponential growth in a salts medium with glucose or succinate as carbon source was about 4 %/h and in a richer nutrient broth medium about 23 %/h. Protein degradation under non-growing conditions conformed to a similar pattern. The turnover of RNA (non-messenger) was about 1 %/h in salts medium and about 9 %/h in nutrient broth. The turnover of protein and RNA in the thermophile is thus moderate rather than massive. This conclusion was confirmed by measurement of the decay of a specific enzyme, isocitrate lyase, in the prototroph and of the overall protein turnover in a non-prototrophic strain of B. stearothermophilus. The half-lives of a number of enzyme systems in intact cells of the prototrophic thermophile at its optimum growth temperature showed some variation but indicated a significant rate of inactivation. Such decay of protein in vivo apparently accounts for the moderate protein turnover observed during growth.  相似文献   

14.
Rapidly dividing Ehrlich ascites cells have a higher rate of protein synthesis than slowly-growing cells. This is true whether protein synthesis is measured in vivo or in a cell-free amino acid incorporating system. A lack of endogenous messenger RNA or a ribosomal defect in stationary cells is suggested as a likely cause of the decreased rate of protein synthesis. The soluble proteins synthesized by rapidly-dividing cells are qualitatively different from those synthesized by slowly-growing cells. The latter also have a larger intracellular pool of several amino acids and a slower protein turnover than rapidly-dividing cells.  相似文献   

15.

Background  

The benzoylformate decarboxylase (BFD) from Pseudomonas putida is a biotechnologically interesting biocatalyst. It catalyses the formation of chiral 2-hydroxy ketones, which are important building blocks for stereoselective syntheses. To optimise the enzyme function often the amino acid composition is modified to improve the performance of the enzyme. So far it was assumed that a relatively small modification of the amino acid composition of a protein does not significantly influence the level of expression or media requirements. To determine, which effects these modifications might have on cultivation and product formation, six different BFD-variants with one or two altered amino acids and the wild type BFD were expressed in Escherichia coli SG13009 pKK233-2. The oxygen transfer rate (OTR) as parameter for growth and metabolic activity of the different E. coli clones was monitored on-line in LB, TB and modified PanG mineral medium with the Respiratory Activity MOnitoring System (RAMOS).  相似文献   

16.
A temperature-sensitive mutant of Chinese hamster ovary cells with an altered leucyl-tRNA synthetase fails to grow and to incorporate amino acids into protein properly at or near the non-permissive temperature. This mutant was used to determine whether cessation of growth at the elevated temperature affected elongation factor EF-1, since the activity of EF-1 is markedly lower in non-growing cells in stationary phase than in rapidly-growing cells in exponential phase. Cell-free extracts prepared from cells maintained at 39°C for 24 h showed a marked decrease in the ability to translate natural mRNAs, compared to cells incubated at 34°C. However, the ability to translate poly(U), which requires elongation factor EF-1 (and EF-2), was not affected. Analyses of activities involved in the initiation of protein synthesis and in the activation of amino acids revealed that, with the exception of leucyl-tRNA synthetase, the rest of the components required for translation also appeared to be relatively stable even after 24 h at the elevated temperature. The effects of elevated temperature on cell-free extracts were also investigated. The results were similar to those obtained with intact cells; that is, except for leucyl-tRNA synthetase which was rapidly inactivated in vitro at 39°C, other aminoacyl-tRNA synthetases and translational components involved in chain initiation and elongation were relatively stable. Thus, no change in EF-1 activity was detected as a result of arrested cell growth, an inherent lability of the elongation factor, or metabolic degradation as a consequence of a rapid turnover rate in the absence of protein synthesis.  相似文献   

17.
Summary Studying the action of sulfanilamide on bacterial nitrogen metabolism, it was shown that: a. Sulfanilamide does not alter the rate of gelatin-hydrolysis by papain or by the proteinase ofB. pyocyaneum andB. prodigiosum. b. Sulfanilamide does not influence the synthesis of aspartic acid from fumaric acid and ammonium chloride by restingB. coli. c. Addition of single amino acids does not counteract sulfanilamide. d. Addition of single amino acids merely accelerates growth slightly; a marked acceleration was obtained only by adding various amino acids simultaneously. e. The addition of such an optimal mixture of amino acids did not exert any influence on the action of sulfanilamide on growth. As the growth acceleration shows that the bacteria are saved an important output of energy in synthesis as a result of the supply of the amino acids, we conclude that sulfanilamide action cannot be due to interference with the synthesis of amino acids from inorganic nitrogen (f.i. NH2 + pyruvate).Considering these facts, we expect sulfanilamide to pursuit its action on bacterial growth by interfering with protein anabolism, anywhere in the synthesis of protein from amino acids.  相似文献   

18.
Summary The kinetics of ethanol oxidation by non-growing cells of Candida utilis in different media at various external pH values was determined experimentally. The statistical discrimination between two rival mathematical models has shown that the mechanism of non-specific substrate inhibition of respiration kinetics fits better the experimental data. It has been found that the maximum respiration activity is controlled by the buffering properties of organic polycarbonic acids in the medium. The pH values at which the maximum respiration rate was observed were close to the pK values of the organic acids in the buffer solution, independently of whether the acids were metabolized or not. Offprint requests to: Jan Paca  相似文献   

19.
The rate of degradation of aspartate transcarbamylase in exponentially growing Bacillus subtilis cells was determined by measurement of enzyme activity after the addition of uridine to repress further enzyme synthesis and by specific immunoprecipitation of the enzyme from cells grown in the presence of [3H]leucine. Aspartate transcarbamylase was degraded with a half-life of about 1.5 h in cells growing on a glucose-salts medium with NH4+ ions as the sole source of nitrogen. Replacement of NH4+ in this medium with a combination of the amino acids aspartate, glutamate, isoleucine, proline, and threonine reduced the degradation rate to an undetectable level. Various other amino acids and amino acid mixtures had smaller effects on the rate of degradation. The carbon source also influenced the degradation rate, but to a smaller extent than the nitrogen source. The effects of these nutritional variables on the rate of bulk protein turnover in growing cells were generally similar to their effects on degradation of aspartate transcarbamylase. Since the degradation of aspartate transcarbamylase has been shown to be 10 to 20 times faster than bulk protein turnover, the results suggest that a substantial portion of protein turnover in growing cells represents regulable, rapid degradation of a number of normal proteins, of which aspartate transcarbamylase is an example.  相似文献   

20.
The effect of continuous treatments of single L -amino acids (0.1mM) on the free running rhythm from the isolated Aplysia eye was examined. A variation in the change in free running period produced by different amino acids was observed. Two well-known precursors of neurotransmitter (tyrosine, tryptophan) had the largest effects. These amino acids lengthened the period ca. 1.7 h. Another group of amino acids (alanine, threonine, proline) lengthened the period by about 1 h. Smaller effects were produced by aspartic acid and leucine and no effects were caused by lysine, glycine, valine, and serine. Phenylalanine may shorten the period a small amount. Glucose (5mM) lengthens the period a small amount (0.4 h), decreases the effect of tyrosine somewhat, and has no effect on the lengthening of the period produced by tryptophan. Three amino acids not involved in protein synthesis (ornithine, β-alanine, citrulline) had at most small effects on the free running period. Also, D -tryptophan lengthened the period by 0.6 h but the effect of D -tryptophan was considerably smaller than the effect of L -tryptophan. A few of the amino acids had small short-term effects on spike rate and longer-term effects on the amplitudes of the rhythms but these effects did not correlate with the effects of the amino acids on the free running period. Though continuous treatments of certain amino acids lengthened the periods, shorter treatments (tryptophan, 6 h) did not phase-shift the rhythm. Since eyes maintained in a commonly used culture medium have longer periods than eyes in a simple seawater medium, the amino acids of the culture medium must be responsible, at least in part, for the lengthening effect of the culture medium. The mechanism of action of the amino acids is unknown. The magnitude of the effects did not correlate with physical-chemical properties of the amino acids nor with whether the amino acids were “essential” or “nonessential.” The effects of the amino acids may be mediated by their effects on neurotransmitter and/or protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号