首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H-NMR studies on the binding subsites of bovine pancreatic ribonuclease A   总被引:1,自引:0,他引:1  
The titration curves of the C-2 histidine protons of an RNAase derivative (a covalent derivative obtained by reaction of bovine pancreatic RNAase A (EC 3.1.27.5) with 6-chloropurine 9-beta-D-ribofuranosyl 5'-monophosphate) were studied by means of 1H-NMR spectroscopy at 270 MHz. The interaction of natural (5'AMP, 5'GMP, 5'IMP) and halogenated purine mononucleotides (cl6RMP, br8AMP) with RNAase A was also monitored by using the same technique. The slight change observed in the pK values of the active centre histidine residues of the RNAase derivative, with respect to those in the native enzyme, can be considered as evidence that the phosphate of the label does not interact directly either with His-12 or 119 in the p1 site, but the p2 site as proposed previously (Parés, X., Llorens, R., Arús, C. and Cuchillo, C.M. (1980) Eur. J. Biochem. 105, 571--579). Lys-7 and/or Arg-10 are proposed as part of the p2 phosphate-binding subsite. The pK values of His-12 and 119 and the shift of an aromatic resonance of the native enzyme found on interaction with some purine nucleotides, can be interpreted by postulating that the interaction of 5'AMP, 5'GMP and 5'IMP takes place not only in the so-called purine-binding site B2R2p1 but also in the primary pyrimidine-binding site B1R1 and p0 of RNAase A.  相似文献   

2.
As an alternative method to study the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase, a series of nucleotide analogs were used. These nucleotide analogs have the advantage over site-specific mutagenesis experiments in that interactions between the backbone of the protein and the nucleotide could be evaluated in terms of their importance for function. The ATP analogs purine 5'-triphosphate (PTP), 6-chloropurine 5'-triphosphate (Cl-PTP), 6-mercaptopurine 5'-triphosphate (SH-PTP), 6-methylpurine 5'-triphosphate (Me-PTP), and 1-methyladenosine 5'-triphosphate (Me-ATP) were partially synthesized from their corresponding nucleosides. Kinetic analysis was performed on the wild-type enzyme in the presence of these ATP analogs along with GTP, ITP, and XTP. PTP, Cl-PTP, and SH-PTP each activate the enzyme at subsaturating concentrations of L-aspartate and saturating concentrations of carbamoyl phosphate, but not to the same extent as does ATP. These experiments suggest that the interaction between N6-amino group of ATP and the backbone of the regulatory chain is important for orienting the nucleotide and inducing the displacements of the regulatory chain backbone necessary for initiation of the regulatory response. Me-PTP and Me-ATP also activate the enzyme, but in a more complex fashion, which suggests differential binding at the two sites within each regulatory dimer. The purine nucleotides GTP, ITP, and XTP each inhibit the enzyme but to a lesser extent than CTP. The influence of deoxy and dideoxynucleotides on the activity of the enzyme was also investigated. These experiments suggest that the 2' and 3' ribose hydroxyl groups are not of significant importance for binding and orientation of the nucleotide in the regulatory binding site. 2'-dCTP inhibits the enzyme to the same extent as CTP, indicating that the interactions of the enzyme to the O2-carbonyl of CTP are critical for CTP binding, inhibition, and the ability of the enzyme to discriminate between ATP and CTP. Examination of the electrostatic surface potential of the nucleotides and the regulatory chain suggest that the complimentary electrostatic interactions between the nucleotides and the regulatory chain are important for binding and orientation of the nucleotide necessary to induce the local conformational changes that propagate the heterotropic effect.  相似文献   

3.
The titration curves of the C-2 histidine protons of RNase A and of derivative II--a covalent derivative obtained by reaction of the enzyme with the halogenated nucleotide 9-beta-D-ribofuranosyl-6-chloropurine 5'-phosphate--in the presence of a number of purine nucleosides, nucleoside monophosphates, and nucleoside diphosphates were studied by means of proton nuclear magnetic resonance at 270 MHz. The examination of the perturbations found on the chemical shifts and pKs of the C-2 protons of His-12, -48, and -119 are consistent with the following conclusions: (1) The interaction of adenosine in the primary purine binding site of the enzyme (B2R2) induces a conformational change in the active center of the enzyme [for the nomenclature of the RNase A binding subsites, see Parés et al. [Parés, X., Llorens, R., Arús, C., & Cuchillo, C. M. (1980) Eur. J. Biochem. 105, 571-579]]. (2) The phosphate moiety of the ligands, independently of its position, probably acts as a general carrier of the nucleotide to the active center, while the substituents of the base are the generators of the specificity of the binding and control the binding equilibrium between subsites B2R2 and B1R1. (3) There is no overlapping between the binding sites occupied by the labeling nucleotide in derivative II (B3R3p2) and the primary binding site for purine mononucleotides (B2R2p1).  相似文献   

4.
The affinity labelling of bovine pancreatic ribonuclease A with 6-chloropurine 5' ribonucleotide allowed us to postulate the existence of a new phosphate-binding subsite, P2, adjacent to the main purine-binding subsite. The study of this reaction in greater detail together with the study of a complex of the enzyme with the pentanucleotide pApUpApApG by means of model building and computer graphics indicate that at least five phosphate groups of the RNA molecule can interact with five positive regions of the enzyme. In each one a lysine residue is present: Lys-104, -66, -41, -7 and -37 appear sequentially in the 5'----3' direction. The distance between each lysine is 0.7-0.8 nm, the same distance as that found between the phosphate groups on the RNA molecule. The study also enabled many amino acid residues of the enzyme to be described as forming part of, or being near, the different binding subsites.  相似文献   

5.
A calorimetric study of the thermodynamic parameters for the binding of adenosine, AMP, ADP, and ATP to L-glutamate dehydrogenase shows that the variation of deltaG0 of binding is quite small and is correlated qualitatively both with the effectiveness of these ribonucleotides as activators of the L-glutamate dehydrogenase reaction and with size (for the first three). Much larger variations are observed for the deltaH0 of binding largely compensated by changes in deltaS0, with a zig-zag dependence on the number of phosphate groups. For comparison, the binding parameters are also obtained for the deoxyribose analogs of these compounds as well as cyclic adenosine 3':5'-monophosphate and purine riboside. Salt concentration and buffer composition were shown to affect mainly the entropy changes for ADP binding; and the deltaCp values for binding of AMP and ADP to the enzyme are quite small. It is suggested that the general area of the enzyme surface which includes the binding sites for ADP and its analogs contains a number of functional groups, each capable of an energetically small interaction with some group on one or more of the ligands, but so located that even the largest ligand cannot interact with all of them simultaneously. Each ligand minimizes the free energy of the system by selecting the best pattern of such individual interactions permitted by its geometry. Such a pattern of microheterogeneity of ligand-protein interactions may be a major source of the known specificity of binding in biological systems.  相似文献   

6.
When the reaction of bovine pancreatic ribonuclease A with 6-chloropurine riboside 5'-monophosphate was carried out in the presence of several natural mononucleotides, a decrease of 25-75% was found in the amount of the reaction product derivative II (the main product of the reaction which has the nucleotide label at the alpha-NH2 group of Lys-1). The efficiency of inhibition followed the order 3'-AMP greater than 5'CMP approximately equal to 5'AMP greater than 3'CMP. Previous studies indicate that this order reflects the extent of occupancy of p2, a phosphate-binding subsite adjacent to the catalytic centre. This finding suggests that derivative II is the result of affinity labelling and that the phosphate group of the halogenated nucleotide binds to p2 before the reaction takes place. The dissociation constants and stoichiometry of the interaction between native enzyme, derivative II and derivative E (homologous to derivative II, but labelled with a nucleoside instead of a nucleotide) with 3'AMP and 5'AMP at several pH values were also determined. Although in general one strong binding site was found, no strong binding occurs between 3'AMP and derivative II. It is concluded that the phosphate of the label occupies the same site p2, as the phosphate of 3'AMP. Finally, the pH dependence for the binding of 3'AMP and 5'AMP to RNAase A indicates that they bind to different protein groups. The results presented support the structure of the active site of ribonuclease A postulated previously (Parés, X., Llorens, R., Arús, C. and Cuchillo, C.M. (1980) Eur. J. Biochem. 105, 571-579).  相似文献   

7.
8.
The reaction of ribonuclease A with either 6-chloropurine riboside 5'-monophosphate or the corresponding nucleoside yields one derivative, with the reagent covalently bound to the alpha-amino group of Lys-1, called derivative II and derivative E, respectively. We studied by means of 1H-n.m.r. at 270 MHz the interaction of these derivatives with different purine ligands. The pK values of His-12- and -119 were obtained and compared with those resulting from the interaction with ribonuclease A. The results showed that the interaction of derivative E with 3'AMP is similar to that described for RNase A as the pK2 of His-12 is increased while that of His-119 remains unaltered. However, derivative II presents some differences as it was found an enhancement of the pK2 values of both His-12 and His-119. Interaction of derivative II and derivative E with dApdA increases the pK2 of His-119, whereas a decrease is found when it interacts with ribonuclease A. These results suggest that the phosphate group and the nucleoside of both derivatives are located in regions of the enzyme where natural substrate analogues have secondary interactions and they can be interpreted as additional binding sites.  相似文献   

9.
The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications.  相似文献   

10.
A conformational transition between E2 and E1 forms of Na, K-ATPase induced by different nucleotides has been studied under steady state conditions using the enzyme labelled with 5-iodoacetamidofluorescein. In the presence of K+ the plot of fluorescence as a function of [ATP], [ADP] or [CTP] (in a range of 5 microM-12 mM) is a biphasic one. A similar dependence for AMP, ITP, GTP and UTP demonstrates a hyperbolic behaviour. The data suggest that the shift in the equilibrium between E2 and E1 forms of Na,K-ATPase towards the E1 conformation is induced by ATP binding both with high and low affinity sites. Two structural features of ATP are apparently important for its interaction with more than one type of ATP binding sites or for providing for E2-E1 transition induced by this interaction: (i) beta-phosphate group in the terminal part of the molecule, (ii) unprotonated N1 and/or NH2-group in the 6th position of the purine base.  相似文献   

11.
The mechanism of the human placental DNase VII, described previously (Hollis, G. F., and Grossman, L. (1981) J. Biol. Chem. 256, 8074-8079) has been investigated in further detail. The enzyme initiates exonucleolytic hydrolysis from the 3'-end of DNA in a nonprocessive, or distributive, manner, regardless of whether the carbohydrate moiety associated with the 3'-terminal nucleotide contains H or OH at its 2' and 3' positions. DNase VII does not have associated RNase H activity; however, it is capable of removing 3'-terminal ribonucleotides. The enzyme also can hydrolyze DNA containing a terminal nucleotide lacking a purine or pyrimidine as well as termini containing noncomplementary nucleotides. DNase VII activity is product-inhibited by deoxynucleoside 5'-monophosphates. From kinetic studies, the mononucleotide deoxyadenylic acid is a noncompetitive inhibitor with a Ki = 0.3 mM. The resemblance of DNase VII to the 3'----5' exonuclease activity of Escherichia coli DNA polymerase I and its possible role in excision repair and proofreading are discussed.  相似文献   

12.
Observation of the growth of some adenineless mutants of Schizosaccharomyces pombe on six substituted purine analogs leads to the hypothesis that an enzyme is present which catalyzes the conversion of these analogs into hypoxanthine. The enzyme adenase (adenine aminohydrolase, EC 3.5.4.2) has been found to be active in cell-free extracts of S. pombe. Results are reported which are in agreement with the hypothesis that this enzyme is responsible for the in vivo utilization of 6-chloropurine. This evidence comes mainly from a study of adenine aminohydrolase in two mutants selected for partial inability to grow on 6-chloropurine.  相似文献   

13.
Trichomonas vaginalis is a parasitic protist incapable of de novo purine and pyrimidine biosynthesis. The lack of these de novo syntheses of nucleotides is supplemented with purine and pyrimidine salvage pathways. Likewise, T. vaginalis is incapable of converting its ribonucleotides to deoxyribonucleotides. Therefore, the parasite must rely on the salvage of exogenous deoxyribonucleosides for DNA synthesis. It has been demonstrated that the parasite can incorporate external adenine and guanine in vitro, but no in vivo nucleotide source has been identified so far. Accordingly, we set out to determine if the parasite could incorporate 3H-thymidine from the nuclei of a cervical-derived cell line into its own DNA. By light and electron microscopy we found that the parasite was able to interact directly, both with mechanically isolated HeLa cell nuclei and with the nuclei released after the disruption of HeLa cell monolayers by the parasite. This study shows that T. vaginalis was capable of incorporating 3H-thymidine from labeled HeLa cells into its own DNA suggesting that the nuclei of this cervical cell line could be an in vivo source of nucleotides for T. vaginalis.  相似文献   

14.
We have determined the binding affinity for binding of the four purine nucleoside triphosphates GTP, ITP, XTP, and ATP to E-site nucleotide- and nucleoside diphosphate kinase-depleted tubulin. The relative binding affinities are 3000 for GTP, 10 for ITP, 2 for XTP, and 1 for ATP. Thus, the 2-exocyclic amino group in GTP is important in determining the nucleotide specificity of tubulin and may interact with a hydrogen bond acceptor group in the protein. The 6-oxo group also makes a contribution to the high affinity for GTP. NMR ROESY experiments indicate that the four nucleotides have different average conformations in solution. ATP and XTP are characterized by a high anti conformation, ITP by a medium anti conformation, and GTP by a low anti conformation. Possibly, the preferred solution conformation contributes to the differences in affinities. When the tubulin E-site is saturated with nucleotide, there appears to be little difference in the ability of the four nucleotides to stimulate assembly. The critical protein concentration is essentially identical in reactions using the four nucleotides. All four of the nucleotides were hydrolyzed during the assembly reaction, and the NDPs were incorporated into the microtubule. We also examined the binding of two gamma-phosphoryl-modified GTP photoaffinity analogues, p(3)-1, 4-azidoanilido-GTP and p(3)-1,3-acetylanilido-GTP. These analogues are inhibitors of the assembly reaction and bind to tubulin with affinities that are 15- and 50-fold lower, respectively, than the affinty for GTP. The affinity of GTP is less sensitive to substitutions at the gamma-phosphoryl position that to changes in the purine ring.  相似文献   

15.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

16.
Deficiency of either one of the subsequent purine catabolic enzymes adenosine deaminase or purine nucleoside phosphorylase results in immunodeficiency disease in humans. However, the mechanism by which impairment of purine metabolism may cause immunodeficiency is unclear. In the present work we have studied the catabolism of purine ribonucleotides and deoxyribonucleotides in T lymphocytes to better understand the role of purine nucleoside phosphorylase and adenosine deaminase in the immune function. It was found that purine deoxyribonucleotides are degraded via catabolic pathways distinctly different from those used for purine ribonucleotide degradation. Thus both adenine and guanine ribonucleotides are deaminated to IMP whereas purine deoxyribonucleotides are exclusively dephosphorylated to the corresponding deoxyribonucleosides. These findings may explain the relatively higher degradation rates of purine deoxyribonucleotides in mammalian cells as compared to purine ribonucleotides. The catabolism of purine nucleotides is tightly linked to the active purine nucleoside cycles which consist of the phosphorolysis of purine nucleosides and deoxyribonucleosides to their corresponding bases, their salvage to monophosphates and back to the corresponding ribonucleosides. The above observations also imply that a possible role of the purine nucleoside cycles is to convert purine deoxyribonucleotides into their corresponding ribonucleotide derivatives. Deficiencies of purine nucleoside phosphorylase or of adenosine deaminase activities, enzymes which participate or lead to the purine nucleoside cycles, thus result in a selective impaired deoxyribonucleotide catabolism and immunodeficiency.  相似文献   

17.
Regulatory elements in intron sequences have been identified for several eukaryotic genes. The fourth intron of p53 is known to increase expression of p53 in a position dependent manner. We asked whether p53 intron 4 sequences interacted with DNA binding proteins to exact their effect. Three overlapping DNA fragments spanning the 5' end of p53 intron 4 were determined to specifically interact with protein in nuclear extracts from several cell lines by band shift analysis. Methylation interference experiments were used to identify purine residues involved in this protein-DNA interaction. Two G nucleotides were identified at intron 4 positions 33 and 44 and these were replaced by T and C, respectively. These two single base pair substitutions in the intron resulted in 1) lack of protein binding and 2) decreased expression of p53 as measured by a transformation assay. Thus the binding of protein to p53 intron 4 was shown to have functional significance. These experiments demonstrated a specific protein binding region in the 5' end of intron 4 critical for p53 expression and distinct from those elements already known to be involved in splicing.  相似文献   

18.
Pyrimidine Biosynthesis in Lactobacillus leichmannii   总被引:5,自引:1,他引:4       下载免费PDF全文
Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented.  相似文献   

19.
Radiosensitization of cultured mammalian cells was studied with halogenated pyrimidines, such as 5-iodouridine or 6-chloropurine, which have been shown to promote bacterial cell lethality when combined with gamma-irradiation. When Chinese hamster cells were exposed to gamma-rays to acidic pH values and the number of colonies was scored after 6 to 11 days of incubation, many more cells were inactivated in the presence of the drug than in its absence. This may be due to radiation-induced cytotoxic iodine radicals from the reagent in the case of 5-iodouridine, because the cells were inactivated efficiently only be contact with the previously-irradiated drug solution. The toxicity of the irradiated drug solution increased remarkably when the pH shifted to acidic side. The radiosensitization and the cytotoxic effects of gamma-irradiated drug solution were not found with 6-chloropurine. This may be the first observation on the lethal effect of chemical radicals on mammalian cells, and it is concluded that radiosensitization with 5-iodouridine does not require the drug incorporation into cellular DNA, at least under the conditions adopted in the present studies.  相似文献   

20.
Fpg protein (formamidopyrimidine or 8-oxoguanine DNA glycosylase) from E. coli catalyzes excision of several damaged purine bases, including 8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine from DNA. In this study the interaction of E. coli Fpg with various specific and nonspecific oligodeoxynucleotides was analyzed. Fpg was shown to remove 8-oxoguanine efficiently, not only from double-stranded, but also from single-stranded oligodeoxynucleotides. The Michaelis constants (KM) of a range of single-stranded oligodeoxynucleotides (0.55-1.3 microM) were shown to be 12-170 times higher that those for corresponding double-stranded oligodeoxynucleotides (KM = 6-60 nM). Depending on the position of the 8-oxoguanine within the oligodeoxynucleotides, relative initial rates of conversion of single-stranded substrates were found to be lower than, comparable to, or higher than those for double-stranded oligodeoxynucleotides. The enzyme can interact effectively not only with specific, but also with nonspecific single-stranded and double-stranded oligodeoxynucleotides, which are competitive inhibitors of the enzyme towards substrate. Fpg became irreversibly labeled after UV-irradiation in the presence of photoreactive analogs of single-stranded and double-stranded oligodeoxynucleotides. Specific and nonspecific single-stranded and double-stranded oligodeoxynucleotides essentially completely prevented the covalent binding of Fpg by the photoreactive analog. All these data argue for similar interactions occurring in the DNA binding cleft of the enzyme with both specific and nonspecific oligodeoxynucleotides. The relative affinities of Fpg for specific and nonspecific oligodeoxynucleotides differ by no more than 2 orders of magnitude. Addition of the second complementary chain increases the affinity of the first single-stranded chain by a factor of approximately 10. It is concluded that Michaelis complex formation of Fpg with DNA containing 8-oxoG cannot alone provide the major part of the enzyme specificity, which is found to lie in the kcat term for catalysis; the reaction rate being increased by 6-7 orders of magnitude by the transition from nonspecific to specific oligodeoxynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号